Representation of Quadratic Forms

Rainer Schulze-Pillot
Universität des Saarlandes, Saarbrücken, Germany

March 13, 2009

Outline

1) Introduction

- Theorem of Kloosterman and Tartakovskii
- Theorem of Ellenberg and Venkatesh

2 The analytic method

3 Arithmetic and ergodic method

Representation of sufficiently large numbers

Theorem (Kloosterman 1924, Tartakovskii 1929)
Let $A \in M_{m}^{\text {sym }}(\mathbb{Z})$ be a positive definite integral symmetric $m \times m$-matrix with $m \geq 5$. Then for every sufficiently large integer t for which

$$
{ }^{t} \mathbf{x}_{\rho} A \mathbf{x}_{\rho}=t
$$

is solvable with $\mathbf{x}_{p} \in \mathbb{Z}_{p}^{m}$ for all primes p the equation

$$
Q_{A}(\mathbf{x}):={ }^{t} \mathbf{x} A \mathbf{x}=t
$$

is solvable with $\mathbf{x} \in \mathbb{Z}^{m}$
In other words:
Every sufficiently large integer t which is representable by the quadratic form Q_{A} locally everywhere is representable by Q_{A} globally.

Proof.

The original proof uses the Hardy-Littlewood circle method.
An alternative proof uses modular forms instead; we'll come back to that.
For $m=4$ one needs additional conditions on t.

Representation of matrices, simplest case

Theorem (Ellenberg, Venkatesh 2006)
Let $A \in M_{m}^{\text {sym }}(\mathbb{Z})$ be a positive definite integral symmetric $m \times m$-matrix, let $n \leq m-5$.
Then there is a constant C such that for each positive definite matrix $T \in M_{n}^{\text {sym }}(\mathbb{Z})$ with $\operatorname{det}(T)$ square free the equation

$$
{ }^{t} X A X=T
$$

is solvable with $X \in M_{m, n}(\mathbb{Z})$ provided T satisfies:
(1) For each prime p the equation

$$
{ }^{t} X_{p} A X_{p}=T
$$

is solvable with $X_{p} \in M_{m, n}\left(\mathbb{Z}_{p}\right)$.
(2) $\min (T):=\min \left\{{ }^{t} \mathbf{y} T \mathbf{y} \mid \mathbf{0} \neq \mathbf{y} \in \mathbb{Z}^{n}\right\}>C$

Outline of talk

- Analytic approach
- Arithmetic approach
- Sketch of proof, generalization, corollaries

Asymptotic formula

Always: $A \in M_{m}^{\text {sym }}(\mathbb{Z})$ and $T \in M_{n}^{\text {sym }}(\mathbb{Z})$, A positive definite, T positive semidefinite.
Idea: Prove the existence of a solution of ${ }^{t} X A X=T$ by proving more, namely an
asymptotic formula
for the representation number

$$
r(A, T):=\left|\left\{X \in M_{m, n}(\mathbb{Z}) \mid{ }^{t} X A X=T\right\}\right|
$$

i. e., a formula of the type

$$
r(A, T)=\text { main term }(T)+\operatorname{error} \operatorname{term}(T)
$$

where the main term grows faster than the error term if $\min (T):=\min \left\{{ }^{t} \mathbf{y} T \mathbf{y} \mid \mathbf{0} \neq \mathbf{y} \in \mathbb{Z}^{n}\right\}$ tends to ∞.

Theta series

A as always (symmetric of size m, positive definite). In addition: A has even diagonal.

Definition
The theta series (of degree 1) of A is

$$
\vartheta(A, z):=\sum_{t=0}^{\infty} r(A, t) \exp (\pi i t z), \quad z \in H=\{z \in \mathbb{C} \mid \Re(z)>0\} .
$$

It is a modular form of weight $k=\frac{m}{2}$ for the group $\Gamma_{0}(N)$ where $N A^{-1}$ is integral with even diagonal:
$\vartheta(A, \cdot) \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ with $\chi \operatorname{depending}$ on $\operatorname{det}(A)$.
Siegel theta series extend this to the theta series of degree n, encoding representation numbers of $n \times n$-matrices.

Siegel theta series

Write $\mathfrak{H}_{n}=\left\{Z=X+i Y \in M_{n}^{\text {sym }}(\mathbb{C}) \mid X, Y\right.$ real, $\left.Y>0\right\}$
(Siegel's upper half space).

Definition

The Siegel theta series of degree n of A is

$$
\vartheta^{(n)}(A, Z):=\sum_{T} r(A, T) \exp (\pi i \operatorname{tr}(T Z)), \quad Z \in \mathfrak{H}_{n}
$$

where T runs over positive semidefinite symmetric matrices of size n with even diagonal.
It is a Siegel modular form of weight $k=\frac{m}{2}$ for the group $\Gamma_{0}^{(n)}(N)$ where $N A^{-1}$ is integral with even diagonal:
$\vartheta^{(n)}(A, \cdot) \in M_{k}^{n}\left(\Gamma_{0}^{(n)}(N), \chi\right)$ with χ depending on $\operatorname{det}(A)$.

Genus theta series

Definition

The genus theta series of degree n of A is

$$
\vartheta_{\operatorname{gen}}^{(n)}(A, Z):=\frac{\sum_{A^{\prime}} \frac{\vartheta^{(n)}\left(A^{\prime}, Z\right)}{o\left(A^{\prime}\right)}}{\sum_{A^{\prime}} \frac{1}{o\left(A^{\prime}\right)}}
$$

where the summation runs over representatives A^{\prime} of the integral equivalence classes in the genus of A and $o\left(A^{\prime}\right)$ denotes the number of automorphs (units) of A^{\prime}.
We write

$$
\vartheta_{\operatorname{gen}}^{(n)}(A, Z)=\sum_{T} r(\operatorname{gen}(A), T) \exp (\pi i \operatorname{tr}(T Z))
$$

and call the $r(\operatorname{gen}(A), T)$ the average representation numbers for the genus.

Local densities and Siegel's theorem

Definition

The local density $\alpha_{p}(A, T)$ (for a prime p) is

$$
\begin{aligned}
\alpha_{p}(A, T)= & p^{j \cdot\left(\frac{n \cdot(n+1)}{2}-m n\right)} \\
& \cdot\left|\left\{\left.\bar{X} \in M_{m, n}\left(\mathbb{Z} / p^{j} \mathbb{Z}\right)\right|^{t} X A X \equiv T \bmod p^{j} M_{n}^{\text {sym }}(\mathbb{Z})\right\}\right|
\end{aligned}
$$

for sufficiently large $j \in \mathbb{N}$.

Theorem (Siegel's theorem)

The genus theta series $\vartheta_{\text {gen }}^{(n)}(A, Z)$ is in the space of Eisenstein series.
One has for positive definite T :

$$
r(\operatorname{gen}(A), T)=c \cdot(\operatorname{det} T)^{\frac{m-n-1}{2}}(\operatorname{det} A)^{\frac{n}{2}} \prod_{p} \alpha_{\rho}(A, T)
$$

with some constant c depending only on m, n.

Asymptotic formula for $n=1, m \geq 5$

Proof of the theorem of Kloosterman/Tartakovskii.
The difference $\vartheta(A, z)-\vartheta_{\text {gen }}(A, z)$ is a cusp form of weight $m / 2$.
We write

$$
r(A, t)=r(\operatorname{gen}(A), t))+(r(A, t)-r(\operatorname{gen}(A), t)) .
$$

The main term $r(\operatorname{gen}(A), t)$ grows at least like $t^{\frac{m}{2}-1}$ for t that are represented locally everywhere (estimate $\prod_{p} \alpha_{p}(A, t)$ from below by a constant or use an estimate for Fourier coefficients of Eisenstein series).

The error term $r(A, t)-r(\operatorname{gen}(A), t)$ is the Fourier coefficient at t of a cusp form,
hence grows at most like $t^{\frac{m}{4}}$.

The case $m=4$

For $m=4$ one needs extra conditions.
For example, $r\left(I_{4}, 4^{j} t\right)=r\left(I_{4}, t\right)$ for all $j \in \mathbb{N}$, so there is no asymptotic growth without extra conditions.
One possible such condition: Fix a $c \in \mathbb{N}$ and request:
For each prime p there is an $\mathbf{x}_{p} \in \mathbb{Z}_{p}^{4}$ with $Q_{A}\left(\mathbf{x}_{p}\right)=t$ and
$\frac{\mathrm{x}_{\rho}}{d} \notin \mathbb{Z}_{p}^{4}$ for $d>c$.
This condition excludes the $4^{j} t$ for large enough j.
(One bounds the imprimitivity of the local solution.)

Asymptotic formula for general n

for general n, the approach for $n=1$ needs some modifications:

- The main term grows like $\operatorname{det}(T)^{\frac{m-n-1}{2}}$ for $m \geq 2 n+3$; it is difficult to estimate the product of local densities for smaller m.
- Obtaining an estimate for the product of densities is in general impossible if $m<2 n+3$ and one does not have local primitive representations.
- The estimate for the error term depends on $\min (T)$ and $\operatorname{det}(T)$
- The difference $\vartheta^{(n)}(A, \cdot)-\vartheta_{g e n}^{(n)}(A, \cdot)$ is not a cusp form but a sum of a cusp form and of Eisenstein series of Klingen type associated to cusp forms in degree $r<n$.

Kitaoka (1979) obtains an asymptotic formula for $\min (T) \rightarrow \infty$ under the condition $m \geq 4 n+4$.

Representations in matrix notation

Let R be one of $\mathbb{Z}, \mathbb{Z}_{p}$ (including $\mathbb{R}=\mathbb{Z}_{\infty}=\mathbb{Q}_{\infty}$)
let $A \in M_{m}^{\text {sym }}(\mathbb{Z}), T \in M_{n}^{\text {sym }}(\mathbb{Z})$ with $n \leq m$ be symmetric matrices.

Definition

T is represented by A over R if there exists $X \in M_{m, n}(R)$ with ${ }^{t} X A X=T$.
T is represented primitively by A over R if X above can be chosen to have elementary divisors 1.

Representations in lattice notation

$(V, Q),\left(W, Q^{\prime}\right)$ quadratic spaces over \mathbb{Q},
$(Q(x)=B(x, x), B$ symmetric bilinear form on $V)$,
$\operatorname{dim}(V)=m \geq \operatorname{dim}(W)=n$,
M a \mathbb{Z}-lattice on V, N a \mathbb{Z}-lattice on W.
Definition
W is represented by V if there is an isometric embedding $\varphi: W \rightarrow V$.
W is represented by V over \mathbb{Q}_{p} if there is an isometric embedding $\varphi_{p}: W \otimes \mathbb{Q}_{p} \rightarrow V \otimes \mathbb{Q}_{p}$.
N is represented by M if there is an isometric embedding $\varphi: W \rightarrow V$ with $\varphi(N) \subseteq M$.
N is represented by M over \mathbb{Z}_{p} if there is an isometric embedding $\varphi_{p}: W \otimes \mathbb{Q}_{p} \rightarrow V \otimes \mathbb{Q}_{p}$ with $\varphi\left(N \otimes \mathbb{Z}_{p}\right) \subseteq M \otimes \mathbb{Z}_{p}$.
The representation φ resp. φ_{p} of N by M is primitive if $M \cap \varphi(W)=\varphi(N)$.

Equivalence of notations

As above, $(V, Q),\left(W, Q^{\prime}\right)$ quadratic spaces over \mathbb{Q},
$M=\mathbb{Z} e_{1}+\cdots+\mathbb{Z} e_{m}$ a \mathbb{Z}-lattice with basis $\left(e_{1}, \ldots, e_{m}\right)$ on V, $N=\mathbb{Z} f_{1}+\cdots+\mathbb{Z} f_{n}$ a \mathbb{Z}-lattice with basis $\left(f_{1}, \ldots, f_{n}\right)$ on W.
$A=\left(B\left(e_{i}, e_{j}\right)\right)$ the Gram matrix of Q with respect to the given basis of M,
$T=\left(B^{\prime}\left(f_{i}, f_{j}\right)\right)$ the Gram matrix of Q^{\prime} with respect to the given basis of N.
Proposition
$N=:\langle T\rangle$ is represented (primitively) by $M=\langle A\rangle$ (over \mathbb{Z}_{p}) if and only if T is represented (primitively) by A (over \mathbb{Z}_{p}).

Number fields

Everything carries over with
$\mathbb{Q}, \mathbb{Q}_{p}$ replaced by F, F_{v} and
$\mathbb{Z}, \mathbb{Z}_{p}$ replaced by $\mathfrak{o}, \mathfrak{o}_{v}$,
where F is a number field, v a place of F.
Notice however: An o-lattice is allowed to be not free as an o-module, hence may not have a well defined Gram matrix.
Therefore: Don't use matrix notation in the number field case.

The HKK theorem

Theorem (Hsia, Kitaoka, Kneser 1978)
Let M be an o-lattice of rank $m \geq 2 n+3$.
Then there is a constant $c(M)$ such that M represents all 0 -lattices N of rank n satisfying
(1) M_{v} represents N_{v} for all places v of F
(2) If M is definite then it is positive and one has $\min (N) \geq c(M)$

- The indefinite case is older (Kneser 1961)
- The constant $c(M)$ can in principle be effectively computed
- There is no statement about the number of representations

Spinor genus

Denote by O_{V} the group of isometries of the space (V, Q).
Definition
Consider lattices M, M_{1} on V that are in the same genus, i. e., there is $u=\left(u_{v}\right)_{v} \in O_{V}(\mathbb{A})$ with $u M=M_{1}$.
Then M_{1} is in the spinor genus of M if and only if

$$
u \in O_{V}(F) \operatorname{Spin}_{V}(\mathbb{A}) O_{M}(\mathbb{A})
$$

Spin $_{v}(\mathbb{A})$ identified with its image in $O_{V}(\mathbb{A})$ under the covering map, $O_{M}(\mathbb{A})$ the stabilizer in $O_{V}(\mathbb{A})$ of M.

Theorem

If V is indefinite spinor genus and isometry class coincide. If V is definite and w a place where $V_{w}=V \otimes F_{w}$ is isotropic (represents zero nontrivially) then a lattice M_{1} in the spinor genus of M is isometric to a lattice M_{1}^{\prime} with $M_{1}^{\prime} \otimes \mathfrak{o}_{v}=M \otimes \mathfrak{o}_{v}$ for all places $v \neq w$.

Representations in the spinor genus

Lemma

Assume $m \geq n+3$. Let N (on W^{\prime}) be represented by M (on V) locally everywhere (primitively).
Then N is represented globally (primitively) by some lattice M_{1} in the spinor genus of M.

Lemma

Assume $m \geq n+3$. Let M, N be as above, let w be a finite place of F with $V_{w}=V \otimes F_{w}$ isotropic.
Then there is a lattice M^{\prime} in the spinor genus of M with $M_{v}^{\prime}=M_{v}$ for all finite places $v \neq w$ of F and $M_{w}^{\prime} \in \operatorname{Spin}_{v}\left(F_{w}\right) M_{w}$ such that N is represented by M^{\prime} (primitively).

So under rather weak conditions we have a representation of N not by M itself but by a lattice M^{\prime} which is "very close" to M.

Sketch of proof, 1

The proof in HKK proceeds by constructing a representation of N by M itself starting from the given one by M^{\prime}, for this one has to first add another copy of N. This raises the bound on m from $n+3$ to $2 n+3$.

EV work group theoretically:
We have N embedded into $M_{1}=u M$ whith

$$
u \in O_{v}(F) \prod_{v \neq w} O_{M}\left(\mathfrak{o}_{v}\right) \operatorname{Spin}_{v}\left(F_{w}\right),
$$

we need the same with $u \in O_{V}(F) O_{L}(\mathbb{A})$ instead.
To achieve this, modify u by a suitable element of $O_{W_{1}}\left(F_{w}\right)$ where $W_{1}=(F N)^{\perp}$.
Problem: When N varies (through a sequence of lattices with increasing minima), W_{1} varies.

Sketch of proof, 2

Lemma

w a non-archimedean place of F, M_{w} an \mathfrak{o}_{w}-lattice of rank m on $V_{w}=V \otimes F_{w}$.
Let \mathcal{W} be a set of regular subspaces of V_{w}, put $N_{W}:=W \cap M_{w}$ for $W \in \mathcal{W}$
Assume that the (additive) w-adic valuation $\operatorname{ord}_{w}\left(\operatorname{disc}\left(N_{W}\right)\right)$ of the discriminants of the N_{W} is bounded by some $j \in \mathbb{N}$ independent of W.
Then the set \mathcal{W} is contained in the union of finitely many orbits under the action of the compact open subgroup
$\tilde{K}_{w}:=\operatorname{Spin}_{M_{w}}\left(\mathfrak{o}_{w}\right)=\left\{\tau \in \operatorname{Spin}_{V}\left(F_{w}\right) \mid \tau\left(M_{w}\right)=M_{w}\right\}$ of $\operatorname{Spin}_{V}\left(F_{w}\right)$.

Sketch of proof, 3

Proposition

As before: $\tilde{K}_{v}=\operatorname{Spin}_{M_{v}}\left(\mathfrak{o}_{v}\right)$ for finite places v of F
Let w be a fixed finite place of F and T_{w} a regular isotropic subspace of $V_{w}=V \otimes F_{w}$ with $\operatorname{dim}\left(T_{w}\right) \geq 3$.
Let $G_{w}=\operatorname{Spin}_{V}\left(F_{w}\right), H_{w}=\operatorname{Spin}_{T_{w}}\left(F_{w}\right)$ and

$$
\Gamma:=\operatorname{Spin}_{v}(F) \cap \operatorname{Spin}_{v}\left(F_{w}\right) \prod_{v \neq w} \tilde{K}_{v} .
$$

Let a sequence $\left(W_{i}\right)_{i \in \mathbb{N}}$ of subspaces W_{i} of V (over the global field F) be given such that $\left(W_{i}\right)_{w}^{\perp}=\xi_{i} T_{w}$ for each i with elements ξ_{i} from a fixed compact subset of G_{w}.
Then one has: If no infinite subsequence of the W_{i} has a nonzero intersection, the sets $\Gamma \backslash \xi_{i} H_{w}$ are becoming dense in $\Gamma \backslash G_{w}$ as $i \rightarrow \infty$, i. e., for every open subset U of G_{w} one has $U \cap \Gamma \xi_{i} H_{w} \neq \emptyset$ for sufficiently large i.

Sketch of proof, 4

The proposition is proved by Ellenberg and Venkatesh using ergodic methods, it is the heart of their proof.
The following proposition uses it to deduce a first result about existence of representations:

Proposition

Let $j \in \mathbb{N}$ and let w be a fixed finite place of F.
Let $\left(W_{i}\right)_{i \in \mathbb{N}}$ be a sequence of regular subspaces W_{i} of V of dimension $n \leq m-3$ with isotropic orthogonal complement in V_{w}, with $\operatorname{ord}_{w}\left(\operatorname{disc}\left(\left(W_{i}\right)_{w} \cap M_{w}\right)\right) \leq j$ for all i, and such that no infinite subsequence has nonzero intersection.
Then $N_{i}=W_{i} \cap M$ is represented primitively by all lattices in the spinor genus $\operatorname{spn}(M)$ for sufficiently large i.

Proof of the proposition, 1

The proof proceeds as follows:
Put $\tilde{K}_{v}=\operatorname{Spin}_{\Lambda_{v}}\left(\mathfrak{o}_{v}\right)$ for all finite places v of F and
$\Gamma:=\operatorname{Spin}_{v}(F) \cap \operatorname{Spin}_{v}\left(F_{w}\right) \prod_{v \neq w} \tilde{K}_{w}$.
By the lemma on orbits $\left(N_{i}\right)_{w}$ (and hence the $\left.\left(W_{i}\right)_{w}\right)$ fall into finitely many orbits under the action of the compact open group \tilde{K}_{w}; we can assume that they all belong to the same orbit: With $T_{w}=\left(W_{1}\right)_{w}^{\frac{1}{w}}$ we have $\left(W_{i}\right)_{w}^{\perp}=\xi_{i} T_{w}$ with $\xi_{i} \in \tilde{K}_{w}$ for all i.
Any isometry class in $\operatorname{spn}(M)$ has a representative $\tilde{M} \subseteq V$ with $\tilde{M}_{v}=M_{v}$ for all finite places $v \neq w$ of F and $\tilde{M}_{w}=g_{w} M_{w}$ for some $g_{w} \in G_{w}=\operatorname{Spin}_{v}\left(F_{w}\right)$.

Proof of the proposition, 2

Remember: $\left(W_{i}\right)_{w}^{\perp}=\xi_{i} T_{w}$ with $\xi_{i} \in \tilde{K}_{w}$ and $\tilde{M}_{w}=g_{w} M_{w}$.
By the previous proposition for every open set $U \subseteq G_{w}$ there is an i_{0} with $U \cap \Gamma \xi_{i} H_{w} \neq \emptyset$ for $i \geq i_{0}$.
Take $U=g_{w} \tilde{K}_{w} \subseteq G_{w}$ and obtain i_{0} such that for all $i \geq i_{0}$ one has elements $\gamma_{i} \in \Gamma, \eta_{i} \in H_{w}, \kappa_{i} \in \tilde{K}_{w}$ with $g_{w} \kappa_{i}=\gamma_{i} \xi_{i} \eta_{i}$.
The lattice $M_{i}^{\prime}:=\gamma_{i}^{-1} \tilde{M}$ is in the isometry class of \tilde{M}; it satisfies $\left(M_{i}^{\prime}\right)_{v}=M_{v}$ for all finite $v \neq w$ and $\left(M_{i}^{\prime}\right)_{w}=\gamma_{i}^{-1} g_{w} M_{w}=\xi_{i} \eta_{i} M_{w}=\xi_{i} \eta_{i} \xi_{i}^{-1} M_{w}$.
From this and $\left.\xi_{i} \eta_{i} \xi_{i}^{-1}\right|_{\left(W_{i}\right)_{w}}=\operatorname{Id}_{\left(W_{i}\right)_{w}}$ we see $N_{i}=W_{i} \cap M_{i}^{\prime}$, i.e., we have the requested primitive representation by a lattice in the given isometry class.

Sequences of lattices with growing minima

We can now turn the "no infinite subsequence with nonzero intersection"-condition into a condition about lattices with growing minima:

Proposition

Let $\left(N_{i}\right)_{i \in \mathbb{N}}$ be a sequence of \mathfrak{o}-lattices of rank $n \leq m-3$. Assume: We can fix a finite place w of F and $a j \in \mathbb{N}$ with:
(1) N_{i} is represented locally everywhere primitively by M with isotropic orthogonal complement at the place w for all i.
(2) $\operatorname{ord}_{w}\left(\operatorname{disc}\left(\left(M_{i}\right)_{w}\right)\right) \leq j$ for all i.
(3) The sequence $\left(\min \left(N_{i}\right)\right)_{i \in \mathbb{N}}$ of the minima of the N_{i} tends to infinity.
Then there is an $i_{0} \in \mathbb{N}$ such that N_{i} is represented primitively by all isometry classes in the genus of M for all $i \geq i_{0}$.

Proof

Proof of proposition.

May consider only lattices in the spinor genus of M and assume $N_{i} \subseteq M$ primitive, let $W_{i}=F N_{i}$. By the previous proposition we must show: There is no infinite subsequence of the W_{i} with nonzero intersection. Otherwise:
Choose $\mathbf{0} \neq x \in M \cap \cap_{i \in I} W_{i}$ with / infinite. By prmitivity: $x \in N_{i}=M \cap W_{i}$ for infinitely many i.
This contradicts the assumption iii) that the minima of the N_{i} tend to infinity.

The main theorem

Theorem (Ellenberg and Venkatesh, slightly generalized)
Fix a finite place w of F and $j \in \mathbb{N}$.
Then there exists a constant $C:=C(M, j, w)$ such that M primitively represents all o-lattices N of rank $n \leq m-3$
satisfying
(1) N is represented by M locally everywhere primitively with isotropic orthogonal complement at the place w.
(2) $\operatorname{ord}_{w}\left(\operatorname{disc}\left(N_{w}\right)\right) \leq j$
(3) The minimum of N is $\geq C$.

The isotropy condition is satisfied automatically if $n \leq m-5$ or if w is such that $\operatorname{disc}\left(M_{w}\right)$ and $\operatorname{disc}\left(N_{w}\right)$ are units at w.

The primitivity condition above may be replaced by bounded imprimitivity:
The representation φ of N by M has imprimitivity bounded by $c \in \mathfrak{o}$ if $c x \in \varphi(N)$ for all $x \in F \varphi(N) \cap M$.

Corollaries, 1

Corollary

Let $F=\mathbb{Q}$, fix a prime q and $j \in \mathbb{N}$. In the following cases there exists a constant $C:=C(M, j, q)$ such that M represents all \mathbb{Z} lattices N of rank n which are represented by M locally everywhere, have minimum $\geq C$ and satisfy $\operatorname{ord}_{q}(\operatorname{disc}(N)) \leq j$:
(1) $n \geq 6$ and $m \geq 2 n$.
(2) $n \geq 3$ and $m \geq 2 n+1$, with the additional assumption that in the case $n=3$ the orthogonal complement of the representation of N_{q} in M_{q} is isotropic.
(3) $n=2$ and $m \geq 6$, with the additional assumption that in the case $m=6$ the orthogonal complement of the representation of N_{q} in M_{q} is isotropic.

Notice that in these cases we have no primitivity condition. In fact, work of Kitaoka implies that N can be replaced by a lattice N^{\prime} which is represented locally primitively and has roughly the same minimum.

Corollaries, 2

Corollary
Let a positive definite \mathbb{Z}-lattice N_{0} of rank $n \leq m-3$ with Gram matrix T_{0} be given. Let Σ be a finite set of primes with $q \in \Sigma$ such that one has
(1) M_{p} and N_{p} are unimodular for all primes $p \notin \Sigma$ and for $p=q$.
(2) Each isometry class in the genus of M has a representative M^{\prime} on V such that $M_{p}^{\prime}=M_{p}$ for all primes $p \notin \Sigma$.
Then there exists a constant $C:=C\left(M, T_{0}, \Sigma\right)$ such that for all sufficiently large integers $a \in \mathbb{Z}$ which are not divisible by a prime in Σ, the \mathbb{Z}-lattice N with Gram matrix a T_{0} is represented by M if it is represented by all completions M_{p}.

Again, work of Kitaoka implies that N can be replaced by a lattice N^{\prime} which is represented locally primitively and has roughly the same minimum.

Final remarks

- The main result allows also versions for representations with congruence conditions and for extensions of representations.
- The proof should also go through for hermitian forms.
- For applications it would sometimes be desirable to have a different condition than growing minimum of the lattices to be represented, e. g. growing discriminant plus representability of all successive minima with sufficiently large representation numbers. It appears that at least the present method is not able to give such a result: If we consider an infinite sequence of lattices $N_{i} \subseteq M$ whose minimum is bounded, there must be infinite subsequences having a nonzero intersection, since there are only finitely many vectors of given length in M.

Matrix version of the main result

Finally a matrix version of the main result:
Theorem
Let $A \in M_{n}^{\text {sym }}(\mathbb{Z})$ be a positive definite integral symmetric $m \times m$-matrix, fix a prime q and positive integers j, c.
Then there is a constant C such that a positive definite matrix $T \in M_{n}^{\text {sym }}(\mathbb{Z})$ with $n \leq m-3$ is represented by S (i.e., $T={ }^{t} X A X$ with $X \in M_{m, n}(\mathbb{Z})$) provided it satisfies:
(1) For each prime p there exists a matrix $X_{p} \in M_{n m}\left(\mathbb{Z}_{p}\right)$ with ${ }^{t} X_{p} A X_{p}=T$ such that the elementary divisors of X divide c and such that the equations ${ }^{t} X_{q} A \mathbf{y}=\mathbf{0}$ and ${ }^{t} \mathbf{y} A \mathbf{y}=0$ have a nontrivial common solution $\mathbf{y} \in \mathbb{Z}_{q}^{m}$
(2) $q^{j} \nmid \operatorname{det}(T)$
(3) $\min \left\{\mathbf{y} T \mathbf{y} \mid \mathbf{0} \neq \mathbf{y} \in \mathbb{Z}^{n}\right\}>C$

The matrix X may be chosen to have elementary divisors dividing c.

Extensions

Corollary

Fix a finite place w of F and $j \in \mathbb{N}, c \in \mathfrak{o}$.
Let $R \subseteq M$ be a fixed o-lattice of rank r with R_{w} unimodular,
$\sigma: R \longrightarrow M$ a representation of R by M.
Then there exists a constant $C:=C(M, R, j, w, c)$ such that one has:
If $N \supseteq R$ is an o-lattice of rank $n \leq m-3$ and
(1) For each place v of F there is a representation $\tau_{v}: N_{v} \longrightarrow M_{v}$ with $\left.\tau_{v}\right|_{R_{v}}=\sigma_{v}$ with imprimitivity bounded by c and with isotropic orthogonal complement in M_{w}
(2) $\operatorname{ord}_{w}\left(\operatorname{disc}\left(N_{w}\right)\right) \leq j$
(3) The minimum of $N \cap(F R)^{\perp}$ is $\geq C$,
then there exists a representation $\tau: N \longrightarrow M$ with $\left.\tau\right|_{R}=\sigma$.
The representation may be taken to be of imprimitivity bounded by c. The isotropy condition is satisfied automatically if $n \leq m-5$ or if w is such that $\operatorname{disc}\left(M_{w}\right)$ and $\operatorname{disc}\left(N_{w}\right)$ are units at w.

