
Counting the solutions of a quadratic equation.

Roger Baker

§1 Introduction.

The ‘quadratic equation’ I have in mind takes the form

F (x) := F (x1, . . . , xn) = m.

Here F is a nonsingular form with integer matrix,

F (x) =
n∑

i,j=1

aijxixj

with D = det[aij] 6= 0. We can assume m ≥ 0. Write N(F, P ) for the number
of solutions in PB = (Pa1, P b1] × · · · × (Pan, P bn] where B is a given box;
P tends to infinity. ‘Solution’ always means ‘solution in integers’.

By 1920, the English mathematicians G. H. Hardy and J. E. Littlewood
had a method (often called the circle method) which gives an asymptotic
formula for N(F, P ) in the case when n ≥ 5 and F is diagonal, that is

F = b1x
2
1 + · · ·+ bnx

2
n.

(The method applies to b1x
k
1 + · · · + bnx

k
n, but we must allow n to become

larger as k increases, e.g. n ≥ 8 for k = 3.) I recommend R. C. Vaughan, The
Hardy-Littlewood method, 2nd edn., Cambridge, and H. Davenport, Analytic
methods for Diophantine equations and Diophantine inequalities, 2nd edn.,
Cambridge, to learn more about the method.

§2 An outline proof.

Under the above hypothesis I will prove in the present lecture, in outline,
that, if we let m→∞ and P = m1/2,

(1) N(F, P ) = σ∞(F,B)σm(F )P n−2 +O(P n−2−δ)
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for a positive constant δ. The expression O(G) for a positive G means ‘any
number, of absolute value ≤ CG, where C is a constant’. Now (1) is an
asymptotic formula if

σ∞ = σ∞(F,B) > 0 and σm(F ) > cF > 0.

The factor σ∞ is connected with real solutions of F = m in PB. We have
in fact

σ∞ = lim
ε→0

1

2ε

∫
x∈B
|F (x)−1|≤ε

1 dx,

which can be shown to be positive if F = 1 for a real x interior to B. For

instance, B =
(
0, 1

4

]5
, F = x2

1 + · · · + x2
5 would yield σ∞ = 0; and indeed in

this case N(F, P ) = 0. We call σ∞ the singular integral.
The factor σm(F ) (the singular series) takes the form

σm(F ) =
∏
p

σp = lim
h→∞

σp1 . . . σph ,

where p1 < p2 < · · · is the sequence of primes. The numbers σp measure the
relative frequency of solutions of the congruence

F (x) ≡ m (mod pk).

To be precise, let N(pk) be the number of solutions of this congruence
(mod pk), then

σp = lim
k→∞

p−(n−1)kN(pk).

For example, if F (x) = 3(x2
1 + · · ·+x2

5) and m 6≡ 0 (mod 3), then N(3k) = 0,
σ3 = 0, σm(F ) = 0. But this reflects the obvious fact that ‘for congruence
reasons’, N(F, P ) = 0.

It can be shown that, in our case n ≥ 5, if each N(pν) is positive, then

σm(F ) > cF > 0

and we get our desired asymptotic formula if B is suitably ‘large’. For sim-
plicity, I take B = (0, b]n below.

In the next lecture we will see how analytic number theorists have pro-
gressed in handling the harder cases n = 4 and n = 3. Much has happened
(in particular) since the 1980s. While the Hardy-Littlewood method almost
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becomes unrecognizable, we do still see singular integrals and singular series
appear.

Let us write e(θ) as an abbreviation for e2πiθ. The start of the process of
proving (1) is the simple observation that∫ 1

0

e(kα)dα =

{
0 if k ∈ Z, k 6= 0

1 if k = 0.

I leave this as an exercise; you have probably seen it in a discussion of Fourier
series. Now write S(α) for the Weyl sum

S(α) =
∑

0<x<bP

e(αx2)

(the variable x is an integer). Now∫ 1

0

S(c1α) . . . S(cnα)e(−mα)dα(2)

=
∑

x1∈(0,bP ]

. . .
∑

xn∈(0,bP ]

∫ 1

0

e(α(c1x
2
1 + · · ·+ cnx

2
n −m))dα

= N(F, P ),

by the observation just made.
It is convenient to write Q = P ν where ν is a small positive constant, say

ν = 1/100, and replace the interval [0, 1] in (2) by

I = [P ν−2, 1 + P ν−2].

This does not change the integral in (2) because the integrand has period 1.
When 1 ≤ a ≤ q ≤ Q and the gcd (a, q) is 1, let

M(q, a) =

{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ P ν−2

}
.

TheM(q, a) (major arcs) are intervals whose rational centers have relatively
small denominator; it’s easy to see that they don’t overlap, for large P . Let
M denote their union. Although it has very small measure, M contributes
the ‘lion’s share’ in (2): I will show that

(3)

∫
M
S(c1α) . . . S(cnα) e(−mα)dα = c∞(F,B)cm(F )P n−2 +O(P n−2−δ).
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The complement m = I\M (the minor arcs) contributes only a small
amount:

(4)

∫
m

S(c1α) . . . S(cnα) e(−mα)dα = O(P n−2−δ).

Combining (3), (4) gives the desired result.
The key to proving (3) is to give a good approximation to S(cjα) in terms

of better understood quantities. These are

vj(β) =
1

2

(cjP )2∑
x=1

x−1/2e(βx)

and

S(q, a) =

q∑
x=1

e

(
ax2

q

)
.

Lemma Let 1 ≤ a ≤ q ≤ Q, (a, q) = 1, α ∈M(q, a). Then

S(cjα) = q−1S(q, cja)vj

(
cj

(
α− a

q

))
+O(Q2).

The error O(Q2) is ‘acceptable’ in the sense that in any integrals where it
appears, we can bound the value of the integral by O(P n−2−δ).

I won’t prove the lemma. If we write α = a
q

+ β, it depends on the fact

that the simpler sum
∑
x≤Y

e
(
cjax

2

q

)
can be written

∑
x≤Y

e

(
cjax

2

q

)
=

q∑
r=1

e

(
cjar

2

q

) ∑
x≤Y

x≡r (mod q)

1

= Y q−1S(q, cja) +O(q).

That is, we distribute our summation into congruence classes.
The lemma leads to an acceptable approximation to S(c1α) . . . S(cnα) of

the form
q−nS(q, c1a) . . . S(q, cna)V

(
α− q

a

)
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where
V (β) = v1(c1β) . . . vn(cnβ).

So we approximate to the integral in (3) by

∑
q≤Q

q∑
a=1

(a,q)=1

q−n
∫
M(q,a)

S(q, c1a) . . .S(q, cna)e

(
−am

q

)

V

(
α− a

q

)
e

(
−
(
α− a

q

)
m

)
dα.

This factorizes as S(m,P )J(m,P ), where

(5) S(m,P ) =
∑
q≤Q

q−n
q∑

a=1
(a,q)=1

S(q, c1a) . . . S(q, cna) e

(
−ma

q

)

and

J(m,P ) =

∫ P ν−k

−P ν−k
V (β)e(−mβ)dβ.

Moreover, the series and the integral can be ‘completed’ with an acceptable
error, so that S(m,P ) is approximated by

(6) σ∞(F,m) =
∞∑
q=1

q−n
q∑

a=1
(a,q)=1

S(q, c1a) . . . S(q, cna)e

(
−ma

q

)

and J(m,P ) is approximated by

J(m) =

∫ 1
2

− 1
2

v1(c1β) . . . vn(cnβ)e(−mβ)dβ.

This integral in turn is acceptably close to σ∞(F,B)P n−2. I have skipped
over the interesting analysis that converts the infinite series in (6) to the
infinite product

∏
p

σp. This concludes our sketch of (3).

As for the minor arcs, one can show that each S(cjα) is relatively small
onm compared with the obvious estimate

|S(cjα)| ≤
∑

x∈(0,bP ]

1 = O(P ),
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namely

(7) S(cjα) = O(P 1+ε−ν/2) (α ∈ m)

for any ε > 0. This estimate, depending on a so-called ‘differencing’ invented
by H. Weyl in 1916, was the beginning of the theory of exponential sums,
which plays a useful role in present-day analytic number theory. Now∣∣∣∣∣

∫
M
S(c1α) . . . S(cnα)e(−mα)dα

∣∣∣∣∣(8)

≤ max
α∈m

5≤j≤n
|S(cjα)|n−4

∫
M
|S(c1α) . . . S(c4α)|dα

≤ C1P
(n−4)(1+ε−ν/2)

∫ 1

0

|S(c1α) . . . S(c4α)|dα

≤ C2P
(n−4)(1+ε−ν/2)

∫ 1

0

|S(α)|4dα.

Here C1, C2 are independent of P . The last step is a technical trick which I
leave as an exercise.

By our original observation on integrals
∫ 1

0
e(kα)dα, the integral

∫ 1

0
|S(α)|4dα

is the number of solutions of

x2
1 + x2

2 − x2
3 − x2

4 = 0 , 1 ≤ xj ≤ bP,

and it is fairly routine to show that this number of solutions is O(P 2+ε).
Thus the integral in (8) is

O(P n−2− ν
2
+nε)

giving our desired outcome with, say, δ = ν/3. This concludes our abbrevi-
ated tour of the proof of (1).

§3 Kloosterman’s paper and Kloosterman sums.

In 1926 H. D. Kloosterman gave an asymptotic formula for N(f,m) as m→
∞. Here N(F,m) is the total number of solutions of f(x) = m, and F is
diagonal and positive definite with only 4 variables. Now apart from an error
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of size O
(
m

1
2
+ε
)

arising from solutions with some xj = 0, N(F,m) is given

by 16N(F, P ) where P = m1/2, B = (0, 1]4. For a solution of

c1x
2
1 + · · ·+ c4x

2
4 = m , 1 ≤ xj ≤ P

gives rise to 16 solutions with arbitrary signs. Once we reduce the problem
to studying N(F, P ), the signs of the cj do not make much difference, but
it is crucial that m 6= 0 or the method fails. The best exposition is T.
Estermann, A new application of the Hardy-Littlewood-Kloosterman method,
Proc. London Math. Soc. 12 (1962), 425–444.

The most striking aspect of Kloosterman’s paper is the estimation and
application of a new exponential sum, the Kloosterman sum

(9) S(h, k, q) =

q∑
a=1

(a,q)=1

e

(
ha+ kā

q

)
.

Here ā is the inverse of a (mod q), that is, aā ≡ 1 (mod q). It is a challenge
to get an estimate

S(h, k, q) = O(qθ)

for gcd (q, h) = 1, with θ < 1. Kloosterman managed to get θ = 7/8, and this
sufficed for his paper. Others improved this, but the most remarkable step
forward came when André Weil in the 1940s used deep methods of algebraic
geometry to prove

(10) |S(h, k, p)| ≤ 2
√
p (p - hk).

From (10), methods already available yielded

(11) |S(h, k, q)| ≤ Cq1/2+ε(h, q)

where C depends only on ε. Incidentally there is now a rather elementary
proof of (10). See W. M. Schmidt, Equations Over Finite Fields, an El-
ementary Approach, 2nd edn., Kendrick Press. There are nowadays many
applications of Kloosterman sums in analytic number theory.

I now indicate Kloosterman’s version of the circle method. Let N =[
m

1
2
+ε
]
, where [ ] denotes integer part. It can be shown that I =

(
1

N+1
, 1 + 1

N+1

]
is the disjoint union of the Farey arcs

I(q, a) =

(
a

q
− 1

qq0
,
a

q
+

1

qq1

]
7



with 1 ≤ a ≤ q ≤ N , (a, q) = 1, and

N < qj ≤ N + q, aq0 ≡ 1 (mod q), aq1 ≡ −1 (mod q).

Hence

N(F, P ) =
N∑
q=1

q∑
a=1

(a,q)=1

∫
I(q,a)

S(c1α) . . . S(c4α)e(−mα)dα

in the notation of Section 2. Writing

A1(q, a) =

∫
I(q,a)

S(c1α) . . . S(c4α)e(−mα)dα,

A2(q) =

q∑
a=1

(a,q)=1

A1(q, a),

we have

N(F, P ) =
N∑
q=1

A2(q).

What Estermann does is write A2(q) as a main term plus an acceptable error.
From there, the analysis is similar to that following the factorization of our
approximation to ∫

M
S(c1α) . . . S(c4α)e(−mα)dα,

in Section 2. The minor arcs have ‘vanished’. The key to the approximation
to A2(q) is the ‘cancellation among the a’s’ in estimating the error term; and
this comes from (11).

Let g(q, a, β) be the indicator function of I(q, a)− a/q,

g(q, a, β) =

{
1 if a

q
+ β ∈ I(q, a)

0 otherwise.

Clearly

A2(q) =

∫ q−1m−1/2−ε

−q−1m−1/2−ε

q∑
a=1

(a,q)=1

4∏
j=1

S(cjα)e

(
−ma

q

)
e(−mβ)g(q, a, β)dβ.
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Our approximation to the integrand takes the form

W (β)
∑
a≤q

(a,q)=1

4∏
j=1

S(q, cja) e

(
−ma

q

)
g(q, a, β)

for a function W (β) similar to V (β) e(−mβ) in §2. If we now expand
g(q, α, β) in a finite Fourier series,

g(q, a, β) =

q∑
h=1

che

(
hā

q

)
, ch = ch(β, q),

we are interested in approximating the sum

q∑
h=1

ch
∑
a≤q

(a,q)=1

4∏
j=1

S(q, cja)e

(
−ma+ hā

q

)
.

This should be enough to convince you of the relevance of Kloosterman’s
sum, and tempt you to read Estermann’s paper.

§4 Heath-Brown’s version of the circle method.

D. R. Heath-Brown gave a powerful method for our problem in his A new
form of the circle method, and its application to quadratic forms (J. reine
angewandte Math. 481 (1996), 149–206). His method gives asymptotic
formulae for

N(F,w) =
∑

F (x)=m

w
(x

P

)
(where either P → ∞ if m = 0, or m → ∞ and P = m1/2). The function
w is smooth and has compact support E, 0 6∈ E, but otherwise w is at our
disposal. The summation is over Zn, the integer points of Rn, so it actually
counts solutions of F (x) = m in PE with weights attached. By taking w1,
w2 above and below the indicator function of a box B, 0 6∈ B̄, we recover an
asymptotic formula for N(F, P ) with a rather weak error term estimate.

The previously inaccessible cases Heath-Brown covers are homogeneous
equations, that is m = 0, with n = 4 (where we recall Kloosterman’s ap-
proach fails) and even n = 3. It is also worth emphasizing that restriction to
diagonal F has disappeared.
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The main terms for m = 0 are interesting. For n = 4 and D, the deter-
minant of F , not a square we get

N(F,w) = σ∞(w)L(1, χ)σ∗(F )P 2 +O(P 3/2+ε)

for every ε > 0. Here σ∞(w) is a constant analogous to the singular integral
in Section 2, χ is the Jacobi symbol

χ(k) =

(
D

k

)

and L(s, χ) is the continuation of
∞∑
n=1

χ(n)
ns

to the complex plane that first

arose in studying primes in arithmetic progression. Dirichlet proved around
1840 that L(1, χ) > 0.

Next,

σ∗(F ) =
∏
p

(
1− χ(p)

p

)
σp,

where the σp are as in Section 1. For D a square, however, we get a different
looking main term: if n = 4,

N(F,w) = σ∞(w)σ∗(F )P 2 logP +O(P 2),

and rather similarly, for n = 3,

N(F,w) =
1

2
σ∞(w)σ∗(F )P logP +O(P ).

In both cases,

σ∗(F ) =
∏
p

(
1− 1

p

)
σp.

It is unusual in the circle method to get a main term that is not merely a
power of p.

The point of departure for these formulae is a new expression for δn,

δn =

{
1 n = 0

0 n 6= 0.
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For P > 1, there is a positive constant cP and an infinitely differentiable
function h(x, y) defined on (0,∞)× R, such that

δn = cPP
−2

∞∑
q=1

q∑
a=1

(a,q)=1

e

(
an

q

)
h
( q
P
,
n

P 2

)
.

The constant cP is very close to 1: for any positive constant N ,

cP − 1 = O(P−N).

Also, h(x, y) = O(x−1) for all y, and h(x, y) 6= 0 implies x ≤ max(1, 2|y|).
I am sorry I have no time to prove this. I admit it looks ugly compared

with δn =
∫ 1

0
e(nα)dα, but in analytic number theory we reckon a powerful

tool is a beautiful tool. The variables a, q play the same role as in creating
intervals around a/q in Sections 2, 3, but one must study the paper before
this comparison emerges.

The next step involves the Poisson summation formula. Let f be any
smooth function on Rn that drops off fairly rapidly at infinity, and write

f̂(y) =

∫
Rn
f(x)e(−x · y)dy

where
∫

Rn dx denotes integration with respect to Lebesgue measure on Rn,
and x · y is the inner product. We have∑

k∈Zn
f(k) =

∑
c∈Zn

f̂(c).

This is an easy deduction from the L2-theory of Fourier series on Rn/Zn.
Let us write G(x) = F (x)−m. Then

(12) N(F,w) =
∑
x∈Zn

w
(x

P

)
δG(x).

Rather as in Section 2, we split the values of x into their respective residue
classes b (mod q). Leaving alone summation over a = 1, . . . , q, (a, q) = 1, for
the moment, ∑

x

w
(x

P

)
e

(
aF (x)

q

)
h(P−1q, P−2G(x))

=
∑

b (mod q)

e

(
aF (b)

q

)∑
k

f(k)
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where, suppressing dependence of f on other variables,

f(y) = w

(
b + qy

P

)
h(P−1q, P−2G(b + qy)).

It is an easy exercise to show that

f̂(c) = q−ne

(
b · c
q

)
Iq(c),

where

Iq(c) =

∫
Rn
w
(x

P

)
h

(
q

P
,
G(x)

P

)
e

(
−c · x

q

)
dx.

Hence an application of Poisson’s formula leads to the following:

(13) N(F,w) = cPP
−2
∑
c∈Zn

∞∑
q=1

q−nSq(c)Iq(c)

with

Sq(c) =

q∑
a=1

(a,q)=1

∑
b (mod q)

e

(
aF (b) + c · b

q

)
.

I leave the details as an exercise.
The Sq(c) can also be found in Estermann’s paper. The ‘cancellation over

a’ is already built into Sq(c) and hence into our formula (13). (Kloosterman
sums appear in evaluating or estimating Sq(c).)

Heath-Brown now has the lengthy task of showing that

cPP
−2

∞∑
q=1

q−nSq(0)Iq(0)

contributes the main term in the asymptotic formula, plus a remainder of
smaller order, and that

cPP
−2
∑
c6=0

∞∑
q=1

q−nSq(c)Iq(c)

is small compared with the main term. (Here I am assuming σ∞(w) and all
σp are positive, which implies σ∗(F ) or σ∗(F ) is positive.) In the hardest
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cases, m = 0, n = 4, D a square and m = 0, n = 3, it is crucial to use

cancellation with respect to q in bounding the series
∞∑
q=1

q−1Sq(c)Iq(c). It

is this ‘q cancellation’ that gives the method extra power compared with
Kloosterman’s approach.

In studying Iq(c), Heath-Brown is building on work of van der Corput
from the 1920s on integrals of simpler form,∫ b

a

g(x)e(f(x))dx,

where g and f are differentiable real functions. A simple case is f(x) = θx,
f ′(x) = θ > 0, g(x) = 1: ∫ b

a

e(θx) =

[
e(θx)

2πiθ

]b
a

,

∣∣∣∣∫ b

a

e(θx)dx

∣∣∣∣ ≤ 1

πθ
.

Van der Corput got nearly the same bound assuming only that g(x)/f ′(x) is
monotonic and f ′(x)/g(x) ≥ m > 0, namely

(14)

∣∣∣∣∫ b

a

g(x)e(f(x))dx

∣∣∣∣ ≤ 4

m
.

See Chapter 4 of E. C. Titchmarsh, The Theory of the Riemann Zeta Func-
tion, 2nd edn., Oxford. The idea behind (14) is the starting point in giving
bounds for Iq(c).

§5 Conclusion.

Some of the most exciting work in this area began in 1987 with the pub-
lication of a paper by H. Iwaniec, Fourier coefficients of modular forms of
half-integral weight, Inventiones Math. 87, 385–401. As W. Duke showed,
Iwaniec had provided the key tool for the description ofN(Q,m) for a positive
definite quadratic form Q in 3 variables (a ternary form), albeit with some re-
striction on the multiplicative structure of m. As the title of Iwaniec’s paper
suggests, one cannot study this without a background in modular forms, for
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which I suggest H. Iwaniec, Topics in Classical Automorphic Forms, Amer-
ican Math. Soc. After that, it might be useful to begin with V. Blomer,
Uniform bounds for Fourier coefficients of theta-series with arithmetic appli-
cations, Acta Arithmetica 114 (2004), 1–21, for orientation. I can only say
that Iwaniec’s work leads to progress because he gives bounds for weighted
sums of Kloosterman sums that are stronger than Weil’s bound, i.e. there is
cancellation between the Kloosterman sums.

The background to the application to N(Q,m) is that a formula of Siegel
gives a link between N(Q,m) and representation of the integer m by forms
in gen Q. The set of forms gen Q consists of positive definite forms that can
be transformed into Q, and vice versa, by a linear change of variable over
the ring of p-adic integers. We take one form Q′ from each of the finitely
many equivalence classes of forms in the genus (where equivalence refers to
transformation over Z) and define

r(m, genQ) =
∑

Q′∈ genQ

W (Q′)N(Q′,m)

for certain positive weights W (Q′) that I won’t define here,
∑

Q′∈ genQ

W (Q′) =

1. So this is an average of N(Q′,m) over forms in gen Q. Siegel’s formula
can be written, for a suitable singular integral σ∞,

r(m, genQ) = σ∞m
1/2L(1, χ∗)

∏
p

(
1− χm(p)

p

)
σp

where χ∗m(k) =
(
−Dm

k

)
. So this is a ‘perfect’ asymptotic formula for an

average over the genus of N(Q′,m). As long as we restrict m a little (the
multiplicative part of m, left after removing the largest squarefree factor,
should be coprime to a certain integer K = K(Q)), we can describe the
difference

N(Q,m)− r(m, genQ)

in terms of the Fourier coefficients of a modular form, and using Iwaniec’s

idea, we can show this is O
(
m

1
2
−δ
)

for a positive. We an also prove that if

σp > 0 for each p, then ∏
p

(
1− χm(p)

p

)
σp > m−ε.

So we actually do extract an asymptotic formula for N(Q,m). The deepest
mathematics I have described in these lectures lies in this section.
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