Some Guesses in the Theory of Partitions
By F. J. Dyson

Proressor Litrrewoon, when he makes use of an algebraic

identity, always saves himsclf the trouble of proving it; he maintains

that an identity, if true, can be verilicd in a few lines by anybody

obtusc enough to fecl the need of verification. My object in the

following pages is to confute this assertion.

In order to save space, I must refer my readers to the first three
pages of chapter XIX of Hardy and Wright’s Tnfroduction o the
Theory of Numbers for a detailed account of the idea of a partition,
and for a description of the way in which the propertics of partitions
are represented in the form of algebraic identitics. I will always
refer to this chapter by the symbol (A). The plan of my argument
is as follows. After a few preliminaries I state certain properties of
partitions which T am unable to prove: thesc guesses are then
transformed into algebraic identities which are also unproved,
although there is conclusive numerical evidence in their support;
finally, T indulge in some even vaguer guesses concerning (hie
existence of identities which T am not only unable to prove but also
unable to state. I think this should be enough to disillusion anyone
who takes Professor Littlewood’s innocent view of the difliculties
of algebra. Needless to say, I strongly recommend my readers to
supply the missing proofs, or, even better, the missing identities.
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The total number of partitions of an integer # into a sum of
positive integral parts is denoted by p(n). The “gencrating function”
of p(n) is the infinite series

w‘\
(1) P= Z D(n)x,
=0
which is a function of the variable x regularin | x| < 1. The form
of I is given by two identities of Ruler
(2) Pt (1 — 2)(1 ~ 2¥9)(1 — (1 —-xa9 ., .,
(f_‘
(3) Pt= Z (- 1)ia IR = p A xS gt -,
ftes — ©
which are proved in (A).
There are three beautiful arithmetical properties of p(x), which
were discovered, and later proved, by Ramanujan, namely :—

(4) 2(5n + 4) == 0 (mod 5),
(5) #l7n -+ 5) == 0 (mod 7),
(0)  p(x3n - 0) == 0 (nod 11).
They appear as theorems 35¢~361 in (A), and can be proved

o

analytically without much difficuity, using identities ke (3); in fuct,
there are at lcast four different proafs of (4) and (.

It would be satisfying to have a direet vroof ol (). DBy this |
mean, that althongh we can prove (in four ways) that the partitions

of 51 4 4 cun be divided into hve cqually numcrous subclusses, it

is unsatisfactory to receive from the proofs no conercie idea of how
the division is to be made.  We require a proof whicl will not appeal
to gencrating functions, but will demonstrate by cross-exainination
of the partitions themselves the existence of {ive exclusive, exhaus-
tive and equally numerous subclasses.  In what follows I shall not
give such a proof, but I shall take the first step towards it, as will
appear.

The result of subtracting the number of parts in « partition from
the largest part we call the “‘rank” of the partition. It is casy to
sce that the ranks of partitions of # will take the values

n—1, #—3, #—4, ..., 2, 1,0, —I, —2, ..., 4N, 3—u, I-—u,
and no others. The number of partitions of # with rank : we
denote by N(m, n). The number of partitions of 1 whose rank is
congruent to s modulo ¢ we denote by N(im, ¢, »).  Thus

(7) N(@n,q,n) = z N(m + rq, n).

r—— @
The conjecturc which T am making is
q -] = ¥} LA
(8) Nio,5, 512--4) — N(1, 5,57 - 4) = N{2, 5,50 | 4)

= N(3,5, 5% -+ 4) = N{4, 5, 57 - 4);

or, in words, the partitions of 5u -}- 4 are divided into iive equally
numerous classes according to the five possible values of the least
positive residue of their ranks modulo 5. In the sanc way we have
(9) N(o,7,71 4 5) = N(1, 7,71 + 5) = ... = N(6, 7, 71 -+ 5).
The truth of (4) and (5) would follow at once, if (8) and (g) could be
proved. But the corresponding conjecture with odulus 11 is
definitely false.

There is in the theory of partitions a “principle of conjugacy,”
explained in (A), p. 272, This principle includes w duality relation
between the number of parts and the largest part in @ partition, and
thus partitions of rank s are in a relation of duality with partitions
of rank —m. It can thus easily be proved that
(10) N(m, n) = N(~— m, n),

(1x) N(m, g, n) = N(g — m, ¢, n).
Hence (8) reduces to only two independent identities, and () to
three,

Fortunately, this reduction of our capital is more than olfset by
other considerations. In fact, (8) and (g) are only the leading and



most interesting members in a whole series of similar identitics, as
sted below i —

(rz) N{z, 5,57 -+ 1) = N(2, 5, 50 + 1),

(13) N(o, 5, 5n - 2) = N(z, 5, 51 - 2),
(8) N(o,5,5m +4) = N(1, 5, 51 - 4) = N(2, 5, 57 -I- 4),
(14) N(z,7,7n) = N(3, 7, 7n),
(15) N (1, 7170 I) = N(2, 7, 7% + I) = N(3, 7,71 I);
(16) N(o,7 71 +2) = N(3 7 71 -} 2),
(17) N(o, 7, 724-3)=N(2,7, 7043), N(1, 7, 7n+3)=N(3, 7, 71 +3),
(18) N{o, 7, 7n +4) = N(1, 7, 7 -+ 4) = N3, 7, 710 + 4),
(9) N(o,7,71-+5)=N(1,7, 7n--5)=N(2,7, 72 +5/=N(3,7, 72 +5),
(r9) N(o,7,7n+4-0)+N(1,7,78-+6)=N(2,7, 721-+6) -+-N(3, 7, 701 -}-0).

Of these relations, only (8) and () give any arithmetical propertics
of p(n). The rest of the series is interesting only because it may
throw some light on (8) and (9); as yet, however, I have been \{n:lble
to find any plan behind the apparently haphazard distribution of

these identities.
* *¥ * %

I now proceed to put the equations into algebraic form by means
of generating functions.  The algebraic form is uscful for numerical
computations, and also scems to offer the best prospect of arriving

at proofs. I shall omit the calculations, but on the basis of formulae
0

to be found in (A) the generating function G{m) = Z Nm, a)xn

H =0

takes the form

(20) G(m) = P z (— 1) =1 (ahr = D golor - 1y,

r=1
where I’ is given by (x). This form is valid when m 2 o and, with
certain reservations, when m << 0 also; but when m < o it is simpler
to usc the relation
(21) Gm) = G(— m),
deducible from (10).
formula w®

(22) Glm) == pz (--

(z0) and (21) can thus be combined in the

[)r -1 (xh(:lrm N plelery ”);\:’ [} ,
roal )
valid for all values of . The scries on the right of (22) is smlplg i
form, and is of the type called “false theta-functions” by Professor
Rogers, if that is any consolation.
The gencerating function of N(m, ¢, 1) is

4 = b
(23) Gm, ¢) = Z N(ut, g, nyam = Z (1 -1 sg),
it == v P — WD

T T PINRENI S Y

- evidence in some detail,

by (7). Wesuppose thal ¢ is a positive integer, an that o << < g,
Then we substitute from (22) into (23), and the summation with
respect to s can be performed in finite tevins, givive: Uie final result

o0 . 'y

(24) Glm, q)::vZ(»-Iy--1(’”““" D (0 e Al ),
(1 — a7

The coeflicients in 1 have been tabulated as (o as X800 and the
coclficients in the serics on the right of (24) «re all very small;
(24) therefore alfords much the quickest way of ealeulating the
valucs of N(m, ¢, n) numerically. The equations (12) - (19) can
be expressed in analytical form by means of {24} as an example we
take the equation N(t, 7, ) == N(3. 7, n), which lcads to the follow-
ing statement.
(25} In the power-series

a0 . B . . . .
P (ot (ET TN D — )

sl

o (r — ;1’7’)
the coefficients of x™44, xS TR xS Gapich S lont teally.

It is interesting for several reasons to examine the numerical
First comes a table of the values of the
two differences :

@ =N(o0,5,1) - N(2, 5,2), b = N(1, 3, n) - N{2, 5,2
for values of # up to 50.

] I b " @ b no o« b n a b n a b

1 1 o 2 0 I 3 o —1 4 o0 o 5 o 1

[CR o 7 o o 8 —1 — 9 o Q 10 [N
1 g o |1z o 1 13 O —2 114 o o | 15 —r g
16 1 o |17 o I 18 —1 —2 |19 o o | 20 o I
21 2 o |22 o 1 23 —~1 —2 |24 o o |25 —1 =2
26 1 0+ 27 o o |28 —1 -3 |29 ¢ o 30 o 2
31 2 o |32 o =133 -1 —3134 o O 735 —~1 2
30 2 o 37 o i 38 -2 —4 39 [o} (e} 40 -1 2
413 0 142 0O 2 143 1 —4 | 44 © O {45 —2 3
46 3 0 l47 o© 248 =2 -3 149 o o | 50 o 3

What is remarkable about this table, apart from the columns of
zevos, i the regularity of behaviour of « and 6 within cach arith-
metic progression of common difference 5, and o the stmallness
of the values,  1f the partitions of A8 were distributed “at random”
into five classes, we should expect statistically that the numbers of
partitions in cach pair of classes would differ by anything from roo
to 250, Clearly, then, the values of « and 4, nanely -2 and —s5,
require some explanation. 1t scems certain that there remain to be
discovered alternative forms for the generating functions of o and 6,
which will make it intuitive when these coeflicients vanish, when
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they are positive, when negative, and why in gencral they are so
small.  And exactly the same remarks apply to the coefficients
relating to the modulus 4. .

In the case of modulus 7, we obtain from cquations (12)-(19)
some striking congrucnce propertics of p(n). We write

¢ = N(o,7,1) — N(3,7,n),d = N(1,7, n) — N(3, 7, ),
e = N(2, 7, n) — N(3, 7, n).
Then, by (11), p(») = ¢ + 2d + 2¢ {mod 7).
Now using (12)-(x9), we find
when n = 1, p(n) = ¢ (mod 7),

when # = 2, p(n) == 2d -} 2¢ (mod 7),
when » = 3, p{n) = 3¢ (mod 7),
when n = 4, p(n) = — 5¢ (mod 7).

Below is a table of the actual least positive residues of p(n)
(mod %) for various values of .

(20)

n 1 8 15 22 29 306 43 50 57 04
Ipr 1 L 1 1 1 I 2 1 2 2
n 2 9 10 23 30 37 14 5 58 05
lpr 2 2 o 2 4 . O 2 2 2
n 3 1w 17 24 3t 38 45 52 59 60
ipr 3 o 3 o 3 3 3 o 3 3
n 4 X 18 25 32 39 40 53 6o OZ
ipr 5 o o 5 5 o 5 o 5 5

It will be scen that these residues exhibit a strong regularity, which
is sufficiently explained by the congruence rf\,]:‘Lt}ons (20) together
with the fact that the valucs of ¢, 4 and ¢ are initially very small.

For comparison I append a similar table of the least positive
residues of p(n) (mod 11) for various values of .

| 2] : 7 8 89 100

n T 12 23 34 45 56 07 7

Ipr 1 4] L 1 I o I o 1 ”xm
N n i 2 13 2 35 40 57 08 79 9o am‘

ipi 2 2 : 0 2 2 : 2 i
‘TL—- i 3 14 257“ 36 47 58 69 8o 91 102

Ipr 3 3 o 3 3 o 3 3 33
. W;z“ %‘Jﬁis 20 37 48 59 70 81 92 lo;

lpr 5 ) 5 o 5 0. 5 o 5 3
) n 5 10 27 38 49 6o 71 82 93 10(4‘

ipr 7 0 7 o o 7 7 [ 7

‘The regularity of this table is of preciscly the sume c]u'u'a'clcr as t::c
regularity of the previous one. One is thus led irresistibly to the
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conclusion that there must e some analogue niodulo 11 to the
relations (26).

I hold in fact:

That there exists an arithmetical cocfficient =imnilar to, but more
recondite than, the rank of a partition: I shall cxll this hypothetical
cocflicient the “crank” of the partition, and d.uole by M{z, ¢, )
the number of partitions of » whose crank is congrucit to i
modulo ¢;

that M(nm, g, n) = M(g — m, ¢, n);

that

M(o, 11, TX2 | 6) = M(x, 11, 1122 - ) = M(z, 11, 1122 4- 6)
== M(3, T1, 111 + 6) = M(4, 1T, 1121 - 6);
that numerous other relations exist analogous to (12)-(19), and
in particular
M(x, 11, 1100} 1) = M(z2, 11, 1100 4-1) = M(3, 11, 110 4-1)
= M(4, 11, 1102 - 1);
that M(m, 11, %) has a generating function not cempletely
different irr form from (24);
that the values of the dilferences such as M(o, 11, n)—M(4, 11, »)
arc always extremely small compared with Pl
Whether these guesses are warranted by the cvidence, T leave to
the reader to decide.  Whatever the final verdict of posterity may
be, I believe the “crank’ is unique among arithinedeal funetions in
haviug been named before it was discovered. May it be preserved
from the ignominious fate of the planet Vulcan!

<@ [ 4

Short Vision

By A. C. Farconer
Thought is the only way which leads to lite
All clse is hollow spheres
Reflecting back
In heavy imitation
And blurred degeneration
A senseless image of our world of thought.

Man #hinks he is the thought which gives him life!
He binds a sheaf and claims it as himsell!

He 4s a ring through which pass swinging ropes
Which merely move a little as he stips.

The Ropes are Thought
The Space is Time
Could Le but see, then he might climb,

£5



