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The common thread in the five chapters is that partitions of integers play at

least marginal role in them. Three can be classified as belonging to number theory,

more precisely partitions and basic hypergeometric series, one of them as belonging to

combinatorics and one to linear algebra using some tools from approximation theory.

Problem One. Every partition of an integer n can be reduced to its unique

t-core, where t is a fixed positive integer. The number of t-cores of n is related

to an expression of 7/-functions. There are several ways (developed by F. Garvan,

D. Stanton and others) to calculate this number. By introducing a new coordinate

system, a simpler method is obtained.

A q-series identity of N. Fine’s shows that the number of 3-core pair solutions

(x, y) of |x| + 2 • |y I

= 3n + 2 is three times the number of solutions of \x
1
+ 2- |y|

= n.

Surprisingly, two combinatorial statistics are found to explain this fact. The solutions

are classified using both of them. This leads to a combinatorial explanation of a

congruence of P. C. Eggans and an interesting self-similarity, among others.
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There is also a new, constructive proof of the old fact that the number of t-cores

#2_1
of tn + t — ~iyA~ can be divided by t, for t = 5, 7, 11.

Problem Two. As a complement to Dyson’s rank, the notion of frame is

introduced by the author to denote the (length of the largest part) + (number of

parts) -1. Various properties of the numbers pr{n) (the number of partitions of n

with frame size r) are noted, including a recursion formula. If the frame is even, then

Priji) is even, and this might help determine the parity of the number of partitions

of n, p(n), since YlrPrin) = p{n). The sum is also obtained.

Problem Three. The classical Bailey transform and the Bailey lemma contain

a surprisingly large slice of the theory of the basic hypergeometric series. It was

G. Andrews who recognized their significance and reformulated them as a matrix

inversion problem. He iterated constant matrices to gain more and more complex

identities and later, with A. Agarwal and D. Bressoud, was able to introduce some

change in the matrices.

The generalization here can be regarded as a careful analysis and rethinking of

their approach. The proof is admittedly very technical. The new parameters gained

may lead to some new and useful identities.

Problem Four. In the course of solving the Problem One, aflfine transformations

were used. Affine transformations are also important in several other fields such as

fractal theory (image compression), robotics, etc. Recurrence sequences are further

examples of affine transformations. Using some approximation theory, an algorithm

and formulas are developed for iterated affine transformations, the results are de-

composed for quicker computation in array computers. The special cases for the two

dimensional transformations are also obtained.

Problem Five. The handling of convolutions of sequences is unified. This natu-

rally leads to determinants of matrices whose entries above the superdiagonal are all

VI



zeros. By analyzing their structure, it is shown how these determinants specialize to

produce the major combinatorial numbers, such as the binomial coefficients, Stirling

numbers of either kind.

A useful, partly survey section, with plenty of formulas, is also included about

how one can manipulate formal power series using these determinants.
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CHAPTER 1

INTRODUCTION

§1.1. The Problems

Dear Reader, you hold five chapters in your hand. Three can be cleissified as

belonging to number theory, one of them as belonging to combinatorics and one to

linear algebra using some tools from approximation theory.

So, what is common in them? Well, the common thread is partitions of integers.

One chapter has this word in its title; another chapter deals with t — core solutions of

linear equations, and these t — cores are special partitions, with t being a parameter.

The topic of a third chapter is ^ — series, which is a device is to look at partition

identities. Determinants look quite innocent, but the special ones we examine in

• •

chapter four can be expanded in the form ^ c • where ji + • • • + jd =

size of the determinant, i.e. it is the size that is being partitioned. What about

the chapter on affine transformations? Here the main result (Theorem 1) contains

summations over partitions of integers.

Let us emphasize that each chapter is self-contained with its own introduction;

therefore, we will only sketch the main ideas of each chapter here.

3-core solutions of the equation |x| -f 2 • |j/|
= n. The concept of the rank of

a partition [rank= largest part minus number of parts] was introduced by Dyson to

give a combinatorial explanation to two of Ramanujan’s congruences modulo 5 and

7 for the partition function. Dyson also pointed out that the rank does not explain

Ramanujan’s third (and deeper) congruence modulo 11, but he conjectured the ex-

istence of another statistic, which he called crank, to explain this third congruence.

1
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Andrews and Garvan did find the crank [And88]. Since their work, there has been

tremendous interest in statistics which would provide combinatorial explanations to

other partition congruences. Such statistics are now given the generic name of cranks.

The following .problem was raised by Frank Garvan. Every partition of an integer

can be reduced to its unique t-core, where < is a fixed positive integer. Let >S'*(n)

denote the set of pairs of 3-core solutions (x,y) of the equation |a;| -|- 2 • |i/| = n,

where |x| is the partitioned integer. Using a q-series identity of N. Fine’s, we see that

^5'*(3n -b 2) = 3 • ^S*{n). Find a crank explaining this property combinatorially.

First, we introduce a new coordinate system, an injection A from the set of

t-cores to Z^“^. It helps us find a very elegant proof of the old fact that the number

of Ucores of tn can be divided by t, for t = 5, 7, 11.

Next, surprisingly, we find two cranks for Garvan’s problem. By using both

cranks, we can classify the solutions in S*{n) into t x t matrices Mt{n). These

matrices have a lot of nice properties, including a self-similarity: the central ninth of

Mg(9n -b 8) is identical to M^{n).

We also prove that M^{9n -b 8) has equal entries, and this provides a combina-

torial proof of a result of Eggan’s [Egg89].

A Classification of the Partitions. As a complement to the rank, we introduce

the term frame (size) to denote the (length of the largest part) -b (number of parts)

-1. In contreist to the rank, which has been studied in depth since Dyson first intro-

duced it, comparatively little is known about the frame. Let pr{n) be the number of

partitions of n with frame size r. Obviously YlrPri''^)
— the number of parti-

tions. We notice that X)nPr(^^) = 2’’"^ and show other properties including how to

generate pr{n) from the set {pdn — r)}j.

An extension of Bailey’s lemma. The theory of partitions, started by Euler,

advanced by many, most notably Sylvester and Ramanujan, leads to the investiga-
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tions of q-series or basic hypergeometric series in a natural way. The classical Bailey

transform and the Bailey lemma contain a surprisingly large slice of the theory of

these series. It was George Andrews who recognized their significance later and re-

formulated them as a matrix inversion problem. He iterated constant matrices to

gain more and more complex identities. Bressoud et al. [Aga87] further modified the

method by changing the matrices at each iteration.

Our generalization can be regarded as a careful analysis and rethinking of their

approach. The proof is admittedly very technical. Using the formula, we can reduce

a multiple sum into a double sum. In the classical case the double sum is further

reduced to a single sum, which in turn can yield a product. We gain new parameters.

On one hand, our analysis helps us better understand the mechanism of the Bailey

chains; on the other hand, the new parameters may lead to some new and useful

identities.

Orbits of iterated affine transformations. In the course of solving the problem

on t-cores, we used affine transformations. Affine transformations are also impor-

tant in several other fields such as fractal theory (image compression), robotics,

etc. Recurrence sequences are further examples of affine transformations. Using

some approximation theory

^

we develop an algorithm and formulas for iterated affine

transformations, then we decompose the results for quicker computation in array

computers.

Determinants, power series, partitions. In this chapter we unify the handling

of convolutions of sequences. This naturally leads to determinants of matrices whose

entries above the superdiagonal are all zeros. By analyzing their structure, we show

how these determinants specialize to produce the major combinatorial numbers, such

as the binomial coefficients, Stirling numbers of either kind. We also include a partly

survey section about how easily we can manipulate formal power series using them.
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§1.2. Notations Used Everywhere

We will use //to extract a coefficient from a formal power series,i.e.

:= Cn- This notation has certain advantages, e.g. we can simplify:

The next notation is standard in the literature.

(1 — a;)(l — xq) •...•(! — xq^~^) if n > 0

1 if n = 0

1/ ((1
— — xq~^) •...•(! — xq^)), if n < 0.

Following [Gas90], we shall use the abbreviation

(xi, a:2 , . .
.

,

Xjfe; q^)n := (xi, q\{x2 , q^)n • •• {xk,

The notations a := b and b =: a both mean that a is defined by b.

Finally, sets and matrices are capitalized, while vectors are underlined, e.g. v.



CHAPTER 2

3-CORE SOLUTIONS OF THE EQUATION \x\ + 2- |t/| = n

§2.1. Introduction

A partition tt of n is a non-increasing sequence of positive integers whose sum

is n. We will write |7t| = n to express this relationship. For example, |5-|-5-|-4-|-2-|-

1 -f 1
1

= 18. Let P{n) denote the set and let p{n) denote the number of partitions of

n. Ramanujan proved that

p(5n -h 4) = 0 (mod 5) , (1)

p{7n -|- 5) = 0 (mod 7) , (2)

and

p(lln -|- 6) = 0 (mod 11) (3)

hold.

Dyson [Dys44] introduced the notion of the rank to interpret these congruences

combinatorially. The rank is just the largest part minus the number of parts. For

instance, rank{5 -|-5-|-4-|-2-|-l-|-l) = 5 — 6 = —1.

Let p(n,rank = k (mod t)
)
denote the number of partitions of n whose rank

is congruent to k modulo t. Dyson conjectured, Atkin and Swinnerton-Dyer [Atk54]

proved that

p{5n + 4, rank = k (mod 5) )
= ^ for each k, 0 < k < 4, (4)

0

5
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and

p{7n + 5, rank = k (mod 7) )
= —— —

-

for each k, 0 < k < 6. (5)

The analogue of statements (4) and (5) for t = 11 is false. It was more than

thirty years later, when Andrews and Garvan [And88] found a new statistic, called

the crank, which gives

p(lln + 6, crank = k (mod 11) )
= ———

^

for each k, 0 < k < 10. (6)

Formulas (4) and (5) are also satisfied if rank is replaced by crank. The crank is just

the largest part, if there are no I’s in the partition, and the number of parts that are

larger than p minus fi, if fi, the number of I’s in the partition is greater than zero. For

instance, cranA:(5 + 5 + 4 + 2 + 1 + 1) = 3 — 2 = 1, cranfe(5 + 5 + 4 + 2+ 1) = 4 — 1 = 3

and crank{5 + 5 + 4 + 2) = 5. There is no known combinatorial proof of (4),(5) or

(6) using the rank or this crank.

But Garvan, Kim and Stanton [Gar90] did find a combinatorial proof using a

different crank. They regarded t-core partitions of n. (We will define and examine

them in detail in the forthcoming sections). Let (n) denote the number of f — core

partitions of n. Congruences (1), (2) and (3) remain valid when p{n) is replaced by

Pf{n). They found three new cranks, one for each t = 5, 7, 11, such that

Pt [

- 1

24
,
crankf = k (mod t)

J

=
p^{tn

<2-1
“24" )

t

for each k^ 0 < k < t — 1.

(
7
)

These cranks are defined on the set of t-cores, denoted by P^(n). But due to the

identities p^(n) = ffq^ and p{n) = these cranks extend to the set

of all partitions P{n), proving (4), (5) and (6). We will give a new, constructive proof

of (7) at the end of the chapter, but our thrust is another problem.
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Let us note here that (1), (2) and (3) have the following generalizations, due to

Watson [Wat38] and Atkin [Atk67]:

and

where

p{5°‘n + <5s^a)
= 0 (mod 5")

,
(!’)

p(7“n + ^7_a) = 0 (mod 7l‘'’l-2J)
,

(2’)

p(ll“n + ^11 ,a) = 0 (mod 11")
,

(3’)

2A8t^a = 1 (mod <"), t = 5, 7, 11. (8)

• The analogous generalizations for t-core partitions were proven by Garvan

[Gar93]:

Pt -
t^-1

24 J
= 0 (mod t'^)

, (
9

)

where t = 5, 7, 11.

Let us introduce the main problem of this section. Eggan [Egg89] studied the

numbers

s(n) :=
1

(9)00 (r;r)2.^2 ' (
10

)

00

He found that they satisfy the congruences

s{n) = 0 (mod 3“), whenever 8n = 1 (
mod 3“

)
.

(
11

)

We will give two kinds of cranks which interpret (11) combinatorially for a =

1,2. The first crank, found by Garvan, is similar to the Andrews-Garvan crank and

proves (11) with a = 1.
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The second kind has the Garvan-Kim-Stanton flavor of extension. We will ex-

amine the coefficients

s*(n) :=
\H ) H )oO \H ) H /OO /I^n

(9)OO
(12 )

OO

and, surprisingly, we will able to find two cranks; their extension combinatorially

proves (11) with a = 1,2 (see§8 — 10). The title of the chapter comes from the fact

that 5*(n) is the number of 3-core pairs (x,y) satisfying |x| -|- 2\y\ = n.

We will start with the first kind of crank.

§2.2. An Andrews-Garvan Crank for s(3n + 2)

The results of this section are due to Garvan (personal communication). Let ur

be a root of unity. The Andrews-Garvan crank depended on the analysis of the

product
(u^^) ’

^ crank by introducing the cube root of unity u in the

product

1 1

(9)00 (9^19^)00’

Since this product is equal to

OO

n
1 1

1^1 (l_^2n)2.(i_^2n-l) (9^1 9^1 9; 9^)00’

we can interpret s{n) as the number of partitions of n in which the even parts may

have two colors (denoted by subscripts 0 and 1). For example, 5(5) = 12 and the

partitions are {5,4j + l,4o + l,3 + 2i,3 + 2o,3 + l + l,2i + 2^ + l,2i +2q + 1,2q +

2o + l,2i + l + l + l,2o + 1 + 1 + 1, 1 + 1-fl + l + l}*

We define the crank for the s(3n + 2) = 0 (
mod 3 )

problem (which is (11) with

a = 1) to be the number of even parts colored 1 minus the number of even parts

colored 0.
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Let s (n, crank = k (mod 3) )
denote the number of colored partitions with the

crank defined above being congruent to k (mod 3) and let s(n, crank = m) denote the

number of colored partitions enumerated by s(n) with crank equalling m. Obviously,

for A: = 0, 1, 2 we have

s {n, crank = k (mod 3) ) = 2^ s(n, crank = m)

m=k{modS)

Theorem 1. For k=0,l,2 we have

(14)

s (3n + 2, crank = k (mod 3) )
= s(3n + 2)

Proof: Observe that

s(n, crank = m) =
1 n „m

(q,zq^,z ^q^-,q^)oo
llq^z (15)

Substitute z = uj, and use (14) to get

s (n, crank = k (mod 3) )
= 1 n. .k

(q,ujq^,u;^q^]q^)oo
llq-u (16)

Take x := q“^, then substitute q^ in the place of q in the identity

(x,XLO,X(jl>^)oo = {X^',q)00
(
17

)

to rewrite the generating function of (16) as

1 1 I (q^-, q^)oo

{q',q‘^)oo (ioq^,uj‘^q^\q^)oo (?; 9^)oo (q^\q^)oo
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But

(9^; 9^)00

(9;?
2
)00

= 2^9 ^

j=0

by a lemma of Gauss’ (see [And76, page 23]), so

(18)

s (n, crank = k (mod 3) )

(9®;9®)oo
by (16)

Therefore

s (n, crank = k (mod 3) )
lo‘

k=0

2^ 7=0 9 2

(^6;^6)
//?”

00
(19)

Suppose n = — 1 (mod 3). In this case + 6m ^ — 1 = n shows that the right

hand side of (19) is 0. From this we can conclude that

s (3n + 2, crank = 0 (mod 3) )
= 5 (3n + 2, crank = 1 (mod 3) )

= s (3n + 2, crank = 2 (mod 3) ) , (20)

which gives the statement of the theorem. |

We will find two other cranks for s(3n + 2) in §9, but we have to build our tools

first.

§2.3. t-core Partitions

Write the Ferrers diagram of a partition tt on a transparency and place it over

a t—colored chessboard. Make sure the upper left corners of the tranparency and

the chessboard coincide and color the dots of the Ferrers diagram by the color of the

underlying chessboard. The colors will be denoted by 0, 1,
— 1, occurring in this

order in the first row, from left to right. In general, the dot at (row r, column c)
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will assume color c — r (mod t). The resulting colored Ferrers graph is called the

t-residue diagram of the partition. For example, the Ferrers diagram of partition

6T6T5T5"|"5T3T1T1 is

and its coloring by the 2-, 3- and 4-color chessboards results in diagrams

0 1 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1

1 0 1 0 1 0 2 0 1 2 0 1 3 0 1 2 3 0

0 1 0 1 0 1 2 0 1 2 2 3 0 1 2

1 0 1 0 1 0 1 2 0 1 1 2 3 0 1

0 1 0 1 0 2 0 1 2 0 0 1 2 3 0

1 0 1 1 2 0 3 0 1

0

1

0

2

2

1

respectively. For a fixed t, let rj = r,(7r) be the number of dots colored j. In the

example above, for ^ = 4 we have tq = 9, ri = 9, T2 = 7 and = 7. From each

dot of the diagram we can make eastward and southward cuts. The F-shaped cuts

obtained are called hooks. The crooked segments of the border which connect the

eastern and southern tips of the F’s are the rimhooks. Using the previous example,

let us initiate the cut at dot (2, 2) and mark the dots belonging to the hook, rimhook

or both by h, r and b. We obtain



12

. h h h b b

. h . . r

. h . . r

. h r r r

. b r

Let h(x,y) denote the number of dots belonging to the hook originated at dot

(x, y) and call it hooklength
;
in our example h{2, 2) = 9. A hook and the correspond-

ing rimhook have the same number of dots.

The t — weight of tt is the number of dots (x,y) such that t divides h(x,y). If

there is no such a point, i.e. the t-weight is zero, the partition is called a t-core.

If we are given a partition and find a hook with h = k • t, we can remove the

corresponding rimhook from the diagram. In the remaining diagram, the number of

dots colored j, r - satisfies r - = rj — k. The repeated removing process will stop; and

no matter in which order we removed the rimhooks whose length was divisible by t,

we end up with the same t-core. This t-core is, of course, the partition of a smaller

integer. If tti and 7T2 are partitions of the same integer, then their t-core is the same

iff rj(7Ti) = rj(7T2) for every j = 0, 1, . . . — 1 [JamSl, page 87].

In the next two sections we leave, seemingly, the realm of t-cores, but we return

in force in §6, armed with the results of the investigations of §4 and §5.

§2.4. Some Elementary Identities

Although we defined numbers rj for a partition tt as the number of dots colored
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j by the underlying t-colored chessboard, the results of this section are valid for

arbitrary complex numbers r,-. Let

Lr<_i j

and define
CQ

11
O1 ai rg - ri

Cl r\ - T2 «2 rg - T2

c :=

1 to

•

•

•

•

n-2 - rt-l

and a :=
•

•

•

at-1

•

•

•

•

eg - n-i

.c<-i. _ rt-i - rg
. . «0 .

0

(Notice that we shifted in the indices of vector a and the last coordinate oq is

always zero.) In short, Cj = rj —rj^i and aj = rg ~f'j' Let us write the relationships

in matrix form, c = Cr, a = Be, and a = {BC)a =: Ar, where

Matrix B has an inverse, B
,
and thus we can write c =

-1 IJ
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B ^a. The determinant of matrix (7, however, is zero. Still, it possesses a right

inverse in the following sense:

Let D :=

1 ••• ••• 1

1
•••

,
let / be any C* —> C function and i be a column

-1 ... -1 Ij

vector with all coordinates 1.

If ^ := f{c) • 1 + ^Bc, then Cr^ = /(c) • 0 + /c = c = Cr_.

Let us introduce two quadratic forms:

=
i=0

3 (
21

)

and

1J. V

—

o

Q2 {x) := « 2-^
where x =

j=0

XQ

XI

xt-l^

For example, if t = 4, Qi(x) equals Xq

(
22

)

XQXi + x\- X\X2 + X2~ X2X3 x\- X3X0

for a general x. But Q\ takes a different form when applied to the specially indexed

vector a:

Ql{a) = a\- ai «2 + «! - «2«3 + «1, since «o = 0,

Lemma 1. Let g be an arbitrary number. The following identities hold:

Qi{l + 9-1) = Qi{l), (23)

Q2 {c) = Q2 {Cr) = Qi{r), (24)

Ql{g) = Q\{Ar) = Qi{r), (25)
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where L

t-1 t-l t-l

= ~Y^rj + tro =

j=0 j=0 j=0

1

t . Q2{c) - L{c) = -
. Q2{c*) -L*+gJ2

j=0

t-1,0 t“^ + 2 1 , t-2<2-1
+ -(P

24 2^^ )
= + -(g

24 2^^ )(^- i)
2’'

t-l

L{c) := '^jcj,

j=0

and

(26)

(27)

(28)

(28’)

Cj := tcj +j-g. (29)

In lieu of PROOF: The identities above are easy to check. We found (25) by writing

Ql(r) = i(2ro - ri - ri-l)^ + j(ci - C2)^ + + ^(r/-2 - n-lf + ~

which made us introduce the coordinate system a with oq = 0 as defined above. |

§2.5. More Identities

Let us remind the reader of the notations (28’) and (22) of the last section,

Hg) = ^2(c) = If TfjZo^j = 0 certainly this is

true for the numbers Cj defined by rj — rj^i there) Q2 {c) is equal to X)j=i

^Q<j<k ^j^k-

2t»

As in §2, let u; denote e « . The identities

zq. zq^

and

[z^\q*)oo = {z,zu),...,zJ~^’,q)oo

will come handy in proving the following lemma.

(30)

(30 ’)
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Lemma 2. Let Ylc>-k denote summation over

t-l

{q — [^05 5
• • • ) — l] • ^ ^

— 0 and cq,
^ ^ Cf— ^

j=0

We have

—= y
, -Z—

/

,tQ 2(c)+L{c)

+t
(31)

andj if t is an odd number

j

nt\, - y
c>—k

qQ2{c)^^L(c)

rij(9)cj-i-fc

(31’)

Proof: We have to use
oo

(— a^)oo —
k

X .

k=0 (q)k

If we substitute for x, then for q, we get

(32)

OO

(-i‘i9‘)» = y'7T-(
9
'(‘)

k=0 {q ^q )k

(32’)

Apply (32) to both sides of (30) to obtain

- (2)
OO

E
Ar=0

q^^' ^k

(q)k

X — (— aj)oo — y^
^0 )***j^t— 1”*"^

giECi)

_n Ujiq^‘^q*)kf
(33)

Similarly, from (32’) and (30’), provided {—xY = —x^, i.e. t is odd, we gain

OOy—
(nt-

q jkX
k=0 {q^',q^)k

={-x*-,q*)oo= y -lEi^ixE^i

— 1—

^

Ilj(9)ikj

(jJ‘ (33’)
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Extract the coefficients of from both sides to get

E
kj=tk^kj>0

and

E
kj=tk,kj>0

Ylj{q)kj

U}‘

Introduce a := kj — k. Remark that

t-1 t-1

kj = tk iff Cj = 0

i=o i=o

Finally, use the identities

and (^
2 )

= ^^(
2 ) ^Ei‘=oi obtain (31). If t is odd, then w^E-?

•/

give (31’). I

Define

Tj*[t] := {q^-,q^)oo and r][t] := q"^T}*[t]

Recall that the usual r/-function is defined by

q{x) := qx"^{qx)oo, where qx :=

Therefore, by substituting q = in (37) we obtain q[t] = q{t • r).

If we take ^ 00 in Lemma 2, we obtain

(34)

(34’)

(35)

(36)

1 and (36)

(37)
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Corollary 1.

rfjtl
= J'

^iQi(c)+Mc)
(38)

and, for odd t,

’!*!<]
= E^ (38’)

where the summation extends for all vectors c = [cq, ci, . .
.

,

c^_i] such that

Z)j=0

§2.6. Various Expressions for the Number of t-cores

We can prove (38) combinatorially too. Let P and denote the sets of all

partitions and all t-core partitions respectively. The following two lemmas are quoted

from [Gar90]:

Lemma 3. There is a bijection between

7T G P and [ttq, . .
.

,

x<_i, tt*] € P x . . . x P x P^, (39)

which satisfies

t-l

|7t| = t • VJ |7Tj| + [tT

j=0

Equation (40) yields

oo
^

/ oo \

E p(’‘)9
" =

1 1 t\t
'

( E j

(40)

(41)

Lemma 4. There is a second bijection between

t-l

7T* G Pf and c G {c = [cq, c\,. .
. , Cf. l)eZ':5^c,=0}

i=o

(42)
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which satisfies

7T*| = t- Q2 {c) + L{c) (43)

Equation (43) yields
oo

n=0 c

(44)

where Q2 {q), L{c) and were defined in (22), (28’) and Corollary 1, respectively.

A SECOND PROOF OF (38) OF COROLLARY 1:

oo oo / f t\t

E = E ft*(")9" = (4*; 9')L • E P(")9" = I

c n=0 n=0

Note.

Let Pf{n) denote the number of t-cores tt satisfying |7t| = n. From the table

above we can see that Pq(3) = p%{7) = 0, for instance. p^C^) easily be zero

too: Po(^) 1 or 0 as n equals a triangular number (^) or not. On the other

hand, Ken Ono [Ono93] proved in his dissertation that P2kiP') > ^ {k = 2,3,...

= 1,2,.. .). It is conjectured that P2(fc+l(^) > 0 for every fc = 2, 3,

We will give several ways to calculate Pi{n) in the next theorem.

n

Theorem 2. Let . .} denote the number of elements in set {. . .}. The following

numbers are all equal to Pf{n), i.e. the number oft-core partitions of n:

t-l

#{r e ^ Tj = n, Qi{r) = tq},

j=0

t-l

#{c :t- Q2 (c) + '^jcj

i=0 i=0

Cj = 0 },

V*[t]*

7/*[l]

(45)

(46)

(
47

)
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t
y[t]

^[1]
//q

n+
24 (48)

#{c*€Z':V(c*) = n + i*, VcJ
i=0

i(t-l)
-t‘9

c*, = j - g (mod t)} (49)

#{£* € Z' : i(32(c*) = n +
- 1

24 , Ec;=o
j=0

•Ci=J-
t-l

(mod t)}, if t is odd
,

(49a)

#{£* € Z'
:

^Q2(c') = 2n 4-
+ 2

12
i=o

•

c,- =J
t-2

(mod <)}, if t is even
,

(49a)

#{a€Z'-' :i-Oi(
a

0

t-l

j=l

(50)

Note.

Equations (45)-(48) are known, they appear in [Gar90], where c is denoted by

n, (49a) is mentioned without the explicit relationship (27) in [Kly82], (50) seems to

be new and this is the coordinate system we prefer to use.

Proof: The expression in (46) is equal to Pf{n) by the bijection of Lemma 4.

(46) 4=^ (45): by (24) and (26), we have n = tQ2 {c)
— L(c) = tQi(r) + X) 7'=o O’

~

tvQ = X)j=o O’ — (4b). As we mentioned in §4, matrix C has a

right inverse. The explicit relationship

L = Q2i£)-l+^Dc (51)
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(see [Gar90, (4.1)] shows that (45) < pt(n).

(46) (49) comes from (27).

(46) (50), since det J5 = 1 ^ 0 and thus B gives a bijection between c and a.

For the linear part we can use (26).

(46) (47) is (38) of Corollary 1.

(47) (48) comes from definition (30). |

Corollary 2. Let K >l and e{k) > 1 for 1 < k < K. Then

K
:= [’'(l)j ’’(2), • • • ,

: 7r(fc) is a t{k)-core and e{k) #7r(fc) = n}

jfc=l

_ yr V*[e{k)-t{k)Y(^) _ fr 7?[e(fc) • t(fc)]^W ,, n+T.f_^ e(k).*L!^

-U n*[e{k)] n v[e{k)]

K
= #{a e ^ e(k)t{k)Qi{

ib=l
0

)
— e • a = n},

where d = ~ ^ •“ ^ •= U(l )5 • • • >^(-^)]

e{k) = e(ifc)-i€

Corollary 3.

If, in the process mentioned in we have to remove t • k lattice points from tt

to get to the core
,
we have the following identity for rj = rj{Tf):

t-l

rQ — k — ^^{rj — rjrj^i) where rt := tq.

j=0

Proof: For each j, rj decreases by the same number when we remove a rimhook.

But the right hand side of the claim does not change, by (23) of Lemma 1. Therefore

rg — X^jZQ(r| — r^Tj+l) has decreased by to 0 when we reach the t-core (see (45)). |
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Let rj be defined as in §1, i.e. the number of dots colored j in the t-residue

diagram. As an illustration of the three characterizations of t-cores via r,c,a we

include the following table.

Table 2-1. 3-core partitions of integers < 20

size partition ai, tt2 ^0 , ’"i ,
r2 Co , Cl ,

C2

1 =1 1,1 1,0,0 1,0,-1

2 =2 0,1 1,1,0 0,1,-1

=1+1 1,0 1,0,1 1,-1,1

4 =3+1 0,-1 1,1,2 0,-l,l

=2+1+1 -1,0 1,2,1 -1,1,0

5 =3+1+1 -1,-1 1,2,2 -1,0,1

6 =4+2 2,1 3,1,2 2,-l,-l

=2+2+l+l 1,2 3,2,1 1,1,-2

8 =4+2+l+l 2,2 4,2,2 2,0,-2

9 =5+3+1 -1,1 3,4,2 -1,2,-1

=3+2+2+l+l 1,-1 3,2,4 1,-2,1

10 =5+3+l+l 0,2 4,4,2 0,2,-2

=4+2+2+l+l 2,0 4,2,4 2,-2,0

12 =6+4+2 -1,-2 3,4,5 -1,-1,2

=3+3+2+2+l+l -2,-1 3,5,4 -2,1,1

14 =6+4+2+l+l 0,-2 4,4,6 0,-2,2

=5+3+2+2+l+l -2,0 4,6,4 -2,2,0

16 =7+5+3+l 3,2 7,4,5 3,-1,-2

=4+3+3+2+2+l+l 2,3 7,5,4 2,l,-3

=6+4+2+2+l+l -2,-2 4,6,6 -2,0,-2

17 =7+5+3+l+l 3,1 7,4,6 3,-2,-l

=5+3+3+2+2+l+l 1,3 7,6,4 lo 1 CO

20 =4+4+3+3+2+2+l+l 2,-1 7,5,8 2,-3,l

=8-|-6+4+2 -1,2 7,8,5 -l,3,-2
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§2.7. A New Proof of the Cranks for Vf(tn — (t^ — l)/24)

We will use coordinate system a in the rest of the chapter. It leads to more

elegant proofs than c used in [Gar90] (which is denoted by n there). Let us remind

the reader that although the vector a = u(7t) was introduced as a f-dimensional

column vector with aj = tq — rj in §4, but we can cut off its last, ag = 0 coordinate.

Thus a denotes a — 1)- dimensional vector from now on. (It denoted the same,

truncated vector in §6 too.)

Row vector / is called a crank for the t-core solutions of |a;| = n, if for each k,

0<k<t-l,

(n, / • a = (mod t)) =
Tf~li

where, by (50),

*Pt(n) = {s € Z‘-‘ : n = «i(
Ql

0

t-i

i=o

Remark that the row vector e of Corollary 2 consists of all coordinates 1, i.e. e = 1_

for the problem [x] = n. Actually, we would like to find cranks for

tn — L,

where

L := 1,2, 5 (for t = 5,7, 11).

and

L{a) := e • a = ai + <*2 + • • • + 1 = ^ (mod t) (53)
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Theorem 3. Let t=5,7,ll. The vectors

= [3, 1, -1, -3], = [2, 1, 1, -1, -1, -2], /j

j

are cranks for the problem \x\ = tn

[-5, 4, 2, 2, 1,-1, -2, -2, -4, 5]

Note.

The cranks are given in terms of the c coordinate system in [Gar90], we just had

to calculate them in terms of our a. The proof below, however, is new.

Proof: We will construct affine transformations Tt : which give bi-

jections (tn — L, f a = k (mod t)) (tn — L,£ - a = k + 1 (mod t)). We

break down the proof into several steps.

Step 1. Encode the partitions of the sets P^ [t — L), (which is the same as

Pf {t — L), since t — L < t) into a. The vectors a appear in the columns of the

following table (the last coordinates ag are always zero, and are omitted):

Table 2-2. The partitions of t - L in the coordinate system a.

P5(4) =

0 0 10 1

0 0 2 10

0 12 0 0

1 0 10 0

4 •P5(4) =

2 4 0 13

The number of columns, pt(t — L) equals t and multiplication by f. above shows

that the (hoped) cranks of the partitions of Pf {t — L) belong to different congruence

classes (mod t).
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Step 2. Any affine transformation T can be written in a matrix form (in this

section d — t — 1):

T{
a Xi ^2 . .

. 2 a

1
,
0 0 ... 0 1. ,1.

aril a:i2

X21 X22

^d,\

0

^d,2

0

X2,d h

^d,d h
0 1

’«r

•

•

•

,
1

,

This has the advantage that composition of affine transformations can be cal-

culated by matrix multiplication. Let us emphasize that here we substituted the last

coordinates oq = 0 with oq = 1? which means we will work with the dilated vectors

a! Let *v denote the significant part of u, i.e. write

T{
a

1
*

H-ld

1

1

)
=

1

Define the affine transformations Tt by two requirements:

if a € Pt{t — L), then *T{
a

1
) G Pt{t — L), (54)

[/, 0] • T{
a

1
) = / • a+ 1- (55)

Matrix Tt permutes the columns of the encoded Pt{t — L) in the order determined

by (55), therefored the desired Tf must be defined by

Tt := [permuted Pt{t — L)] • [Pt{t — L)\ ^

.

The matrices obtained are given below:
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Table 2-3. The matrices of the affine transformations Tt .

11 Ti 1

3 3 -8 3 3 -8 3 3 3 -8 7

9 -2 -13 9 -2 -2 -2 9 -2 -2 10

7 -4 -4 7 -4 -4 -4 18 -4 -4 9

8 -3 -3 8 -3 -3 -14 19 -3 -3 15

12 -10 1 12 -10 1 -10 12 1 -10 17

8 -3 -3 19 -14 -3 -3 8 -3 -3 15

7 -4 -4 18 -4 -4 -4 7 -4 -4 9

9 -2 -2 9 -2 -2 -2 9 -13 -2 10

14 -8 3 3 3 -8 3 3 -8 3 7

11 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 11

7 -Tr

-6 11 1 1-6 5

-7 0 0 7 -7 0 7

-3 -3 -3 11 -3 -3 6

-1 -8 -1 6 -1 -1 9

-1 -1 -8 6 -1 -1 9

4 -3-3 4 -3 -3 6

0 0 0 0 0 0 7

STs

-3-3 2 2 3

-3 -3 7 -3 3

0 -55-5 5

- 411-4 4

0 0 0 0 5

The first salient feature of the matrices Tt above is that they are = 4- (integer

matrix). We will show that these transformations act analogously to (54) and (55)

on Pfitn — L), for every n = 1, 2, 3, . .

.

Step 3. First of all, they satisfy T' = I. This was verified by hand and Matlab.

Step 4- They preserve the size of the t-core:

The last coordinate of vector T(m) is always 1, and should be replaced by 0

before Q\ or L are applied on the left hand side of (56). Condition (56) is a very

strong one, and this is the easiest place for the crank property to break down. We

used Mathematica to verify (56).

Step 5. Check that the if a € then T(a) G too. Well, this follows from the

beautiful structure of these matrices. All entries of row j (except the last, dilational
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one), are congruent to the same number (mod t). In other words, if we write

t • r(
[f] )

= Xa + 6, e = [1, . .
. , 1] € and ( :=

6

6

-^t-1 -

,
then we have

X = ( • e (mod t). (57)

In addition, observe that

+ b = 0 (mod t) (58)

Therefore

t-T{
a

1
)
= Xa + b = ({e •a) + b = (L + b = 0 (mod t)

Step 6. There are integers a and /3 such that

l/.0|r-l/,0l=a[e,0|+/3-[0,l] (59)

and

La + = 1 (mod t). (60)

The values of a and ^ can be found in Table at the end of the proof of this theorem.

Therefore for any a € we have / •* T(
[y] )

— / • a = aea + = 1 (mod f),

proving that Tt maps Pf{n, f • a = k (mod t)) into a = k + 1 (mod t))

Step 1. The determinant of Tt is 1 for each f = 5, 7, 11, therefore Tt establishes

a bijection. This finishes the proof that for every k the sets Pt(n,f. - a = k (mod t))

contain the same number of elements, where f. are the vectors given in the statement

of Theorem 3.

With this, we finished the proof of Theorem 3. |
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Table 2-4. Some parameters of T<.

t L a P h

5 1 2 -1 -2 1

7 2 1 -1 1 1

11 5 -4 -1 4 2

Additional properties of the matrices Tt .

The entries of row j of matrix X are all congruent to

1 - + (i - (mod t),

where the values of and h are given in Table 4. above.

We can state a property like (57) for any power of T:

For each k we have

'i{k)e b{k)'

0 1

The sets {^j{k) : j = 1,2, — 1} are permutations of the roots of the following

polynomials of degree t — 1:

t-1
t-1

R{x) = x(x - 1) • ji[
(x - 1 -1- ^ n (

i=2 i=l

This shows a one-to-one correspondence between the powers of roots of unity, and

1 - w - tf-
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Now concatenate the columns of to get the matrix For example,

We can observe that

det[Et] =

provided we choose (j{k) G [

—

Let us make a final observation: the matrices M = 11 • Tn, 7 • Ty and 5 • Tg

have remarkably similar structures.

Table 2-5. Matrices with similar structure.

11 •Tn

3 3 -8 3 3 -8 3 3 3 -8 7

9 -2 -13 9 -2 -2 -2 9 -2 -2 10

7 -4 -4 7 -4 -4 -4 18 -4 -4 9

8 -3 -3 8 -3 -3 -14 19 -3 -3 15

12 -10 1 12 -10 1 -10 12 1 -10 17

8 -3 -3 19 -14 -3 -3 8 -3 -3 15

7 -4 -4 18 -4 -4 -4 7 -4 -4 9

9 -2 -2 9 -2 -2 -2 9 -13 -2 10

14 -8 3 3 3 -8 3 3 -8 3 7

11 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 11

7 - ‘7
2

-1 6 -8 6 -1 -1 2

4 4 -10 4 -3 4 6

1 8 -6 1 -6 8 5

4 4 -3 4 -10 4 6

6 -1 -1 6 -8 6 2

7 0 0 0 0 0 0

0 0 0 0 0 0 7

5 -Ti

2 2 -3 -3 3

6 -4 1 -4 4

7 -3 -3 2 3

5 0 0 0 0

0 0 0 0 5

In all three matrices M above, we have M(t — 1,1) = t, M{t — l,2..t) = 0,

— 2, 2..t — 1) are centrally symmetric submatrices with = 1 in

their center. In addition, = -{t - 1). Of course, similar facts can be

said about M = 1 1 • and 5 • too.
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§2.8. An Identity of Nathan Fine’s

In (37) of §5 we already introduced rj[t] := where q = e

In N. Fine’s book [Fin88
,
page 86

]
we find the following identity:

.2wiT

^ = S 4 • /(^). wherem =

0
,

if d = 0,±2

{ if d = 3

d\N

,
1

,
if d = ±1 (mod 6).

(65)

Take first N = prime, then N = prime power, finally a general N to obtain the

following lemma.

Lemma 5.

IfN = 2'^-3^-
ps’ then

)[l-3p ,|2-3p

>?[1| "/PI
/// = 3^ . h—

J

PI -

1

Vr-
Let us specialize Corollary 2. in §6 . Here K = 2, t(l) = t{2) = 3, d =

(3 — 1) + (3 — 1) = 4 and

e=[l,l, 2
,
2

]
(67)

Apply Lemma 5 with N = n + 1 • + 2 • = n + 1 to obtain the following
3^-1

theorem.

Theorem 4.

//’ n = 2 '^
• 3^ • p^^ • ... • p^’ — 1 then

s*{n) = #{[7t(1), 7t(2)] : both are 3-cores and |7t(1)| + 2 • |7t(2)| = n}

- 1

= 3

Ul+ 1 ,

X Pi ^

PI - 1 Ps - 1

6 : 3(af + 02 “ ^ 1®2 ) + 6(03 + 04 — 0304 )
— (ai + 02 )

— 2(03 + 04 )
= n}
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We would like point out two consequences of Theorem 4;

s*{3n + 2) = 3 • s*{n)
(68 )

and

s*(2n + 1) = s*{n). (69)

§2.9. Two Cranks for s*(3n + 21

First we have two identify our crank candidates among the vectors of

(mod 3). Each of the four coordinates can have values {—1,0,1}. That gives 3^

choices for /. We can cut down the size of the list of candidates by regarding

|7ri|+2-|7r2| = 3*6+2 = 3*7—1. This equation has 3* = 24 solutions of 3-core pairs

symbolized by a = [01,02,03,04]. Only six out of the 81 vectors classify these solu-

tions into three equinumerous classes. But two of these six vectors, / = [—1, 1,0,0]

and [1, —1,0, 0] do not classify the 18 solutions of [ttiI -|- 2 •
|

7r2| = 3 • 4 -f 2 = 3 • 5 — 1

evenly, / • o = 0 (mod 3) does not occur at all, while = ±1 (mod 3) occur nine times

each.

So we are left with four candidates, but with only two linearly independent ones:

±[-1,1, -1,1] and ±[-1,1,1,-!].

We will prove that they are cranks indeed. But first let us show that the

Andrews-Garvan crank on S{3n ± 2) discussed in §2 is not a crank on its restric-

tion S*{3n ± 2), where

S*{n) := {[7r(l),7r(2)] € P3 x P3* : |7r(l)| ± 2[7r(2)[ = n}
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Let us calculate the cranks of the colored 3-core solutions of |7ti| -|- 2 • |7T2| = 8

(the reader might find it useful to look at Table 1).

For example, the solution [tti, 7T2] = [2 -f- 1 -|- 1, 1 -|-
1] is equivalent to the colored

partition 2q -1- 1 -|- 1 -H 2i -|- 2i, which has two 1-colored and one 0-colored even parts,

therefore its crank is 2 — 1 = 1. On the other hand, if we calculate the scalar

product of [-1,1,-1,1] with the a-representation of this solution, [-1,0, 1,0], the result

is 0. (Multiplication of the second crank candidate [-1,1, 1,-1] with [-1,0, 1,0] results

in —1).

Similarly, solution [7ri,7r2] = [2 -f 1 -|- 1,2] is equivalent to the colored partition

2q -|- 1 -|- 1 -|- 4i, whose Andrews-Garvan crank is 1 — 1 = 0; while the dot product of

[-1,1,-1,1] by [-1,0,0,!] is congruent to —1 (mod 3).

We find that the Andrews-Garvan type crank of §2 classifies the nine solutions

of IttiI -|-2- 1^21 = 8 into non-equinumerous classes; it places (4,2,3) of them in classes

(-1,0,1) (mod 3). On the other hand, both [-1,1,-1,1] and [-1,1,1,-!] clcissify (3,3,3)

of the solutions in these classes.

Theorem 5. The vectors

/(I) := [-1, 1, -1, 1]
and f{2) := [-1, 1, 1, -1]

are both cranks for the sets S*{3n + 2).

Proof: We will follow the steps of the proof of Theorem 3. (Historically, however,

the proof of Theorem 3. is the imitation of this proof).

Step 1, The matrix of an affine transformation which proves the crank property

(if it exists at all) must have 2*2 + 1 columns. These columns are the unknowns we

are looking for. So it is not enough to encode the three partitions of Ps(3 — 1) this
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time, we have to encode another P^{3n + 2) set too. To our luck, ^3(2 • 3 — 1) will

do job, and the resulting six linear equations will give two solution quintets.

Table 2-6. The partitions of 2 and 5 in the coordinate system
[01,02103,04]-

^^3(2) y.1 y.2 P3(5) m.2
t^3

1 0 0 -1 1 1

0 1 0 -1 1 1

0 0 1 0 1 0

0 0 1 0 0 1

/(1)-P3(2) 2 1 0 /(1)-F3(5) 0 2 1

/(2).P3{2) 2 1 0 /(2)-P3(5) 0 1 2

Step 2. Define the affine transformation T3 by the requirements

if o € T*3 (
2 ), then *T{

a

1

if o G f’3 (5), then *T{
a

1
) e P3(5),

and

[/, 0] • T{
a

1
) = l/.O)

0

1

-
1-

1

(mod 3)

There are two solutions for (70) and (71):

(70’)

(70”)

73 (
1
) := [U3,ilbil2,102,i£3,m] ’

^

and

^3(2) := [vs^vi,V2,w^,wi,W2 \ • [ill,
0^3]“^-

In other words, T^{1) maps U3
—

*

—> v\ —

>

U3 the same time W3
—

>

W2 —^ W.I
—

^

1£35 while 73(2) has the same action on 7*3(2) and the reverse action

I03 •*— I£2 ^
*— 1^^3 3̂ (5 )- Consequently, T3(1)T3(2) = T3(2)T3(1).
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Table 2-7. The matrices T^.

3- ^3(1) CO • l3(2)

-2 1 -4 2 2 -2 1 to 1 2

-1 -1 -2 4 1 -1 -1 4 -2 1

2 -1 -2 1 1 1 -2 -1 -1 2

1 -2 -1 -1 2 2 -1 1 -2 1

0 0 0 0 1CO 0 0 0 0 3

Step 3. Verify that T3(l)^ = T^(2)^ = I. This is done easily.

Step 4 - They preserve the size of a 3-core solution pair: if

'bi' 'ai'

0^
to «2

bz II•
• 03

64 04

1 _ 1 _

then 3 (
6
j + b^~ bib^) -|- 6(6^ -|- 64

- 6364) - (bi + 62) - 2(63 -|- 64) =

3(oj + <*2 “ ‘*1^2) + 6(03 + «4 - 0304) - (ai -f 02) - 2(03 -I- 04).

Step 5. Check that they map into itself. For this, write t • T^{
[y] )

= Xa -|- b

again. Notice that

[
1

,
1

,
2

,
2

]
= ^ • e (mod 3

)

L-IJ
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and

X{2) = -

-1

1

1

1 J

[1, 1, 2, 2] = ^ • e (mods).

In addition, 1 -^ + 6 = 0 (mod 3) for both matrices. Therefore

t-Tz(
a

1
)
= Xa + k = ^{e-a) = ^ -1 + 6 = 0 (mod 3)

Step 6. There exist integers a = 1 and /3 = 0 such that

[/, 0]T - [/, 0] = a • [e, 0] + /? • [0, 1] = [1, 1, 2, 2, 0].

This leads to

/ • T{a) — f • a = a • (ea) + /d = l- l+ 0 = l (mod 3).

Step 7. The relationship detT3(l) = detT3(2) = 1 shows that £= 1,2

established bijections between

S* (3(n + 1) — 1
, /(O = ^ (mod 3)) and S* (3(n + 1

)
— 1

, f{£) = A: + 1 (mod 3)).

With this, we finished the proof of Theorem 5. I

The two cranks on 5'*(3n + 2), found in this section can be extended to cranks

on S{3n + 2) by the bijection of Lemma 3. Thus we have three different (see the

beginning of this section) cranks on S{3n + 2).
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§2.10. Further Investigations: a Proof of 3*l9n + 8 ) = 0 Imod 9)

As in the past, let

5*(n) := {[x(1),7t(2)] 6 P3 x
:
|7t(1)| + 2|7t(2)| = n}

Having two cranks, we can classify the solutions using both of them.

Let fc(3) := [^i,^29 ^3 ]
= [2,0,1] and

A(0) • [^1 , ^2, ^3? ^4, ^5? ^6? ^7? ^8? ^9 ]
2, 5, 6, 0, 3, 7, 1, 4].

We set up a t X t matrix Mi for t = 3,9. Entry (i,i) of Mi{n) will count a solution

[tti, 7T2 ]
G *S'*(n) if the image a of the solution in satisfies both /(l)-a = ki (mod t)

and /(2 )
• a = kj (mod t).

For example, the two cranks classify the 42, 3 • 42, 3^ • 42 solutions of |7t(1)| +

2|7t(2)| = 40, 122, 368 into the following matrices:

Table 2-8. Examples of the dual classification.

M3 (40)

2 0 1

2 1 5 6

0 5 8 5

1 6 5 1

Mg (40)

6

0

825603

000002

010020

000001

000201
020020

2 0 1 10 2

000
|

020|100

202200000
200100000

7 14

0 2 2

0 0 0

0 2 0

0 2 1

2 0 0

0 0 0

M3 (122)

2 0 1

2 12 12 18

0 12 18 12

1 18 12 12

Mg(122)

6

0

8 2 5

0 0 1

042001

1 2 2 2 1 21

4 0 2i

0 0 1

71 2 0 3 1 0 0

023204

4|3 3 2 2 1 2

6 0 3

4 0 2

2 3 0

3 2 3

212032

7 14

2 0 3

0 2 3

3 3 2

12 2

0 0 1

0 4 2

4 0 2

0 0 1

2 12

M3 (368)

2 0 1

2 42 42 42

0 42 42 42

1 42 42 42

Mg (368)

8 2 5 6 0 3 7 14

8 6 7 7 5 5 1 3 4 4

2 7 2 2 5 15 4 3 4

5 7 2 2 8 6 6 4 4 12

6 5 5 8 15 6 5 16

0 5 16 5 8 5 15 6

3 15 6 6 5 1 5 5 8

7 3 4 4 5 15 2 7 2

1 4 3 4 15 5 76 7

4 4 4 12 6 6 8 2 7 2

From the symmetries of the quadratic form of Theorem 4 we can see that the

general form of the matrices is
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M3(n)

c b d

b a b

d b c

These matrices have plenty of interesting properties, let us prove some of them.

Theorem 6.

(a) All nine entries of M^{9n + 8) are equal.

(b) There is a kind of self-similarity: the central ninth of the blow-up Mg{9n + 8)

is identical to M^{n).

(c) M^{3n + 2) can appear in one of the following three forms, according to n

(mod 3);

n = 0

a’ b’ b’

b’ a’ b’

b’ b’ a’

n = 2

b’ b’ b’

b’ b’ b’

b’ b’ b’

n = 1

b’ b’ a’

b’ a’ b’

a’ b’ b*

where a' = a 2b and b = b c d.

Let us remark that statement (a) proves (11) of §1 for a = 2.

Theorem 7.

(a) Ms{2n + 1) =
d b c

b a b

c b d

(b) MQ{n)=^Mg{2^{n-\-l)-l).

To prove these phenomena, we shall first find injections
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C/2 : S*{^) —* S*{2n + 1
)
and C/3 : S*{n) —> S*{3n + 2). This involves some

search by trial and error. The winning definitions are the following.

Let U^{1) be the affine transformation that takes

into

-10 0 0

0 10 0

0 0 10

0
-

0

0

e[P3(2),P3(2),P3(4),P3(4),P3(0)]

LO 0 0 1 OJ

0 -1 2 0 01

-1 0 020
0 110 1

L 1 0 0 1 iJ

€ [P3(8), P3(8), P3(14), P3(14), ^3(2)]

The image was chosen so that /(I) • 1/3 (
1
)
= 0 (mod 3)

C/3 (2) is defined to take the same set of vectors into

- 0 -1 2 0 0
-

-1 0 020
1 0 0 11

. 0 110 1.

This image was chosen so that /(2) • U^{2) = 0 (mod 3).

Finally, U2 is defined to take the basis (72) into

-1 1 1

1 1 -1

0 1 0

-1

1

0

1
-

1

0

e[P3(5),P3(5),-P3(9),/>3(9),f3(l)l

LI 0 0 0 OJ
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One can check (for example by Mathematica) that the application to a of the

resulting matrices

%(2
)

:

0 -1 2 0 0

-1 0 0 2 0

0 -1 -1 0 1

-1 0 0 -1 1

0 0 0 0 1

1/3(1) ^

0 -1 2 0 0

-1 0 0 2 0

-1 0 0 -1 1

0 -1 -1 0 1

0 0 0 0 1

1/2 =

0 0 0 -2 1

0 0 -2 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

do increase the value of the quadratic expression

3(af + 02 " + 6(o| + a\- 0304) - {a\ + 02) - 2(03 + 04) from n to 3n + 2 or

2n + 1 for every n.

Step 2. Let us compute /(I) • and /(2 )
• U^. Since detU2 = 2^,detf/3(l) =

3^,detC/3(2) = —3^, the inverse matrices (x = —1) do exist.

With the abbreviations

vi := -/(2) +£4, v_2 := /(I) +£4, 23 := /(I) +£5, where V4 := [0,0, -1,1] and

£5 := [—1,1, 0,0], we have the following tables (the fifth coordinates, if zero, are

omitted):

Table 2-9. The effects of iterating 1/3(1).

• (mod 9) t/3 (l)-‘ t/3 (l)“ 1/3(1)' 1/3(1)' 1/3(1)® 1/3(1)* t/3 (l)® t/3 (l)« 1/3(1)/ f/3 (l)* 1/3(1)®

/(i) -
5 /( 1 ) + «5 /(!) 3v^ -3/(2) -3/(2) 6U3 3v^ 3/(2) -6V3

/(2 ) /(2 ) /(2 )
- 3}U

-2V3 -^3 -/(2 ) + 3v^ 2^3 ys /(2 )
- 32^

Table 2-10. The effects of iterating 1/3(2).

• 1/3(2)-! 1/3(2)® 1/3(2)! 1/3(2)* 1/3(2)® 1/3(2)* 1/3(2)®

/(O -5/(2) + V5 /(I) 3/(1) 3v^ 9/(1) 9^3

/(2) /(2) 3v^ 3/(2) 9t^ 9/(2) 2724

Table 2-11. The effects of iterating C/2.

• C/f' I/O i/* l/|

/(O -2lil /(O -2/(1) —2v^ 4/(1) 4jii -8/(1) —Svi

/(2) -|H2 /(2) -2/(2) -22<2 4/(2) 43:2 -8/(2) -8v^
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Table 2-12. Tz (
2)^Uz {

l ).

• (mod 3) T3(2)°U3(1) T3(2)ll/3(1) T3(2)2J73(1)

m
0

-m
[-e, 1]

Table 2-13. 1/^( 1 )“^

.

• (mod 3) T3{2fU3{l)^ T3(2)‘t/3(1)» U3{1)^ T3{iyu3(.if r3(i)2c/3(i)2

0 0 0 1 2

m 1/(2), 2] [/(2).l] m /(2) m
An interesting fact from Table 9, although we do not need here is that

lil)Us{ir+^ = -3/(2)C/3(1)* (mod 9).

Proof of Theorem 7:

To prove (a) of Theorem, note that = ~/(l) (mod 3) and V2 = /(2)

(mod 3).

Therefore if M^{n)

'Cl bl di- '<^2 h C2'

h a h then M^{2n -|-
1)
= h a ^3

.^2 64 C2- -Cl bl ^1-

The 6-cycle in the apparent orbit of U2 in Mg (Table 11) proves (b). |

Proof of Theorem 6:

The identity

l/(l)t/3(2)2,/(2)l/3(2)^l _ [/(1),/(2)|

9 3

(which can be read from Table 10) proves (b).

Note that £3 = —/(2) (mod 3). Table 9 tells us that a solution in [/(l),/(2)]
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of M3 is mapped into [0, — /(2)] € M^{3n + 2) by f/3(l).

'ci bl d\

'

Therefore, if M^{n) = 62 a h

.^2 64 C2 -

,
then the image of it by is

C/3(l)M3(3n) =

0 0 0

C2 + b^ + di 64 + 0 + 61 c?2 + ^2 + Cl

0 0 0

(73)

Regard Table 12. Since e- a = n (mod 3), one iteration by matrix T3(2) moves a

This proved statement (c) for n = 0, 1, but showed only a' = b' for n = 2. Of

course, we know from 3(3n + 2) + 2 = 9n + 8 that the case n = 2 of (c) and (a) are

the same statements.

Consider Table 13. Let the bullet, • mark the position of a possible solution in

M3, if the exponent x is zero. The arrows indicate the direction of the change as x

increases. The next two diagrams in M3 give a proof of (a):000111 XXX
T3(1)*173(1)^ : ... r3(2)*t/3(l)^ : .— .—

.

Ill XXX
0 0 0

Since det T3 = 1 ,
the maps above are all one-to-one, therefore the diagrams above

prove (a). I



CHAPTER 3

«

A CLASSIFICATION OF UNRESTRICTED PARTITIONS

To give a combinatorial explanation to Ramanujan’s congruences

p(5n -|- 4) = 0 (mod 5) and p{7n + 5) = 0 (mod 7) ,

Dyson introduced the rank, which is (the length of the largest part) -(number of

parts). In contrast to the rank, we introduce the notion of frame to denote the union

of the first row and first column in the Ferrers graph of the partition. The frame size

is the (length of the largest part) + (number of parts) -1. If we are more relaxed

with our usage, we use the word frame for frame size. Note that the frame and the

rank are of opposite parity. Let pr(^) be the number of partitions of n with frame

size r. Obviously, ^y.pr(^) = p(^)- We will examine a few basic characteristics of

this new classification. By peeling the frame off, we get to a partition of the integer

n — r. By reversing this process, we can see that the sequence of successive frame

sizes and ranks determine the partition.
»

Lemma 1. The row sums are consecutive powers of two,

^pr{n) =
n

Proof; Suppose we have a partition of n with frame size r. This means that if the

largest part is of size j, where 1 < j < r, then the number of parts is r — j + 1.

This partition can have j — I horizontal and r — j vertical strokes on its boundary

connecting the legs of the P of its Ferrers graph. This gives (jli) choices, and

e;=i (,•:!)

42
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Table 3- 1 . pr {
n ), where (n,r-)= (partitioned integer, frame size)

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

22 22

21 21 19

20 20 18 34

19 19 17 32 45

18 18 16 30 42 66

17 17 15 28 39 61 79

16 16 14 26 36 56 72 106

15 15 13 24 33 51 65 95 117

14 14 12 22 30 46 58 84 102 136

13 13 11 20 27 41 51 73 87 114 134

12 12 10 18 24 36 44 62 72 92 104 120

11 11 9 16 21 31 37 51 57 70 74 78 77

10 10 8 14 18 26 30 40 42 48 44 46 40 40

9 9 7 12 15 21 23 29 27 26 23 21 15 13 7

8 8 6 10 12 16 16 18 12 12 8 6 2 2

7 7 5 8 9 11 9 7 4 3 1

6 6 4 6 6 6 2 2

5 5 3 4 3 1

4 4 2 2

3 3 1

2 2

1 1

01 02 03 04 05 06 07 08 09 16 12 13 14 15 16 17 18 19 20 21 22
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Lemma 2. Pr{n) > 0 iff r is between roughly y/n and n.

In detail, {{n,r) : pr{n) > 0} = where Q are half lines with slope 45®,

which we call cuts. To avoid writing 0 indices everywhere, let us denote the endpoints

of these cuts by (n,r) too, i.e.

C = {{n d,r d) \ n — r = £, d > 0}.

Place n between two consecutive squares, and (A; + 1)^.

(a) //n = + m, where 1 < m < k, then r = 2k.

(b) If n = k“^ + k + m, where 1 < m < k + 1, then r = 2k + 1. §

Lemma 3. Let e be 0 or 1.

If (n, r) = {k^ -j- e • k + m, 2k + e), then

(n + r + 2, r + 2) = {{k + 1)^ + e • (A: + 1) + (m + 1), 2(k + 1) + e)

(n — r,r — 2) = ({k — 1)^ + e • (fc — 1) + (m — 1), 2{k — 1) + e)

(n - 2r + 2,r - 4) = {{k -2f + e- (k - 2) + {m - 2), 2{k - 2) + e) |

Fix (n,r) as the endpoint of a cut
,

i.e. Pr{n) > 0, but pr-i{n — 1) = 0. We

gave the relationship between r and n in Lemma 3., and now we are going to ascend

along the cut.

We are interested in the numbers {pr+di'^ + d) : d > 0}. Let us introduce the

shorthand notation p^ := pk(n — r) for the partitions of (n— r). We have the following

identities:

Pr{n) = 1 -p*_2,

Pr+l(” + 1) = 2 • p*_2 + 1 • Pr_i,
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Pr+(f(” + c?) — (c? + 1) • p*_2 + d • p*-l + . . . + 1 • p*_2+d^

where 0<c?<n — 2r + 2,

/>„_r+2(2n-2r+ 2) = (n-2r+ 3)-p*_2 + (n-2r+ 2)-p*_i + . . . + 2-p*_r_l + l-pi^_r,

Pr+d{f^+d) = (c?+l)-p*_2 +c?-p*_i + . . .+ (<i-n4-2r)-p*_^_l+(c?-n+2r-l)-pj^_r,

where d > n — 2r + 1.

We can summarize the previous identities in one lemma.

Lemma 4. Let (x)-|- be max{x^0}. For any d>0 we have the identity

n— 2r-|-2

Pr+d(« + d)= {d+l-k)^- p*r_2+k-

k=0

I

Corollary. Pr+i{n + 1) - Pr{n) = p{r -n) iff r>

Proof: Notice that the differences p.^^^^\{n + d + 1) — Pr+d(^ + d) are all equal to

Pr-2 + Pr-1 + • • • + Pn-r-1 + Pn-r = P(^ “ asd>n-2r + l. |

Lemma 5. If r is even, then pr(^) is even as well.

Proof: We want to prove that the lemma is true along every cut Cg. The proof uses

induction on £. Suppose the lemma is true for € = 1, 2, n — r— 1. If r > 2, we have

_ (t> _ 2) < n — r, therefore the lemma is true at each entry in the column

with horizontal coordinate n — r. If r is even, then pr{n) = Pr—2(^ ~ is even,

Pr+2(^ + 2) = pr{n) + PriP' Pr+4(^ + 4) = Pr-|-2(^ T 2) + Pr+2(^ etc. are all

even numbers. If r is odd, then p^+l(^ + 1) = 2pr-2(^ — r) + pr-\{n — r) is even and
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now Pr+i{n + 3) = Pr+\ (n+ 1) +Pr+1 Pr+5(” + 5) = Pr+3 {n + 3) +Pr+3 (»^ “

are all even. Finally, If r > we have Pr+2(^ + 2) = pr{n) + 2p{n — r), therefore

the parity cannot change. |



CHAPTER 4

AN EXTENSION OF BAILEY’S LEMMA

§4.1. The Classical Case

This introduction is intended to be short. The reader is encouraged to consult

[Lil93] about applications and for further references.

Let the sequences {or}^ and {un}^ be connected by the identity

n

E df

These sequences are called Bailey pairs. (The equations of the first two sections are

numbered (al), (a2), etc., while the formulas quoted from §3 [the reference section]

are numbered (1), (2), etc.).

Let us define two new sequences.

Then and of have the same relationship as (al), namely

n

< = E
a,

r=0
(9)71—r(c9 )n-fr

In other words, we have the following lemma.

47
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Lemma 1 (Bailey lemma).

Corollaries.

Ehl.72)n(^) A„ =
(£1 £l\
VTi ’ 72 J oo

oo

E (71,72)n
\ n

eg \

(ca -n \7172/
7172 ) 00 V7i ’ 72 / „

On - (®'4 )

,n „n^ N

EtV— = E
n=0 n=0 (9)AT—n (^9) AT-fn

(a5)

OO
1

00

Ecv’a„=^;^cv an (a6)

The following diagram shows how the corollaries were obtained from the lemma:

71,72-^00
(Lemmal) > (ao)

N—^00 AT—00

7I.72—)>oo

(a4) ^ (a6)

G. Andrews made several observations. First of all, we can iterate the process

of creating new pairs by (al) and (a2). Second, we can iterate it backward too. This

way we obtain the following chain:
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I 1

a(-2) ^(-2)

‘I "I
a(-i) 1- A(->)

'1 '1

a A

1 I
o(l) 4(1)

‘1
1

a(2) 4(2)

1 1

The iterated Bailey lemma has led to many applications in additive number

theory, combinatorics, special functions and mathematical physics. For example, the

Rogers-Ramanujan identities can be proved by applying two iterations (see the article

[Lil93] for further references).

The Bailey lemma can be cast in a matrix form. Define the matrices Pc, Q and

matrix dQ consisting of diagonal elements of Q:

Pc {n, r)
1

(?)«—r i^^)n+r

Q{n,r)

Bailey’s lemma expresses the relationship

Pc = Q Pc • {dQ)~^ or dQ = {Pc)-^ Q • Pc.
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The inverse of matrix Pc is

v^/n—

r

D. Bressoud [Bre83] has given an elegant proof of (alO) by introducing the matrices

L\f r and showing that

^b,c ^c,d ~ ^c,di

where

, , > _ (0„_, 1 -

(^)n-r(cq)n+r 1-c

In particular, Li, ^.
•

j
= /. Notice that Pc = D\ • Lq c

' where D\ and D2 are

diagonal matrices. Therefore

— ^
• lini Tc,e \

which is equal to (alO) using (1) from §3.

The question arises what happens if we change the parameter c of matrix Pc at

iterated applications of Bailey’s lemma. If we are given parameters c, c of matrix

Pc (defined in (a7)) and matrix Q (defined in (a8)) what matrix Q' would make the

following diagram commutative?

p-
a A

Q'
I

Q

a' A'
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Agarwal et al. [Aga87] answered the question for = f • the next section, we

answer the question for any c^, by analyzing their proof. We will also be able to get a

result with several extra parameters added to the definition of matrix Q. Moreover,

Q can be a finite product of such matrices.

§4.2. The Extension

Theorem 1 (extended Bailey’s lemma).

a

Q' Q

a A'

Let the (n, element of the following matrices be defined by

Pc{n,r) ;=
1

(?)«—r (^^)n+r

t \ {lliil2i)r (75i9)n-r „\r
Qi n = 7 T;

7—\ •

(73i?74i)n (9)n—

r

Here i = 1,2, . .
.
,k, where k > 1. These matrices are infinite to the right and down,

since n,r > 0. They are also lower triangular, by property (3b) of%Z Let ^s form now

matrices from the diagonals of Qi ’s:

dQi (n, r) :=
|^t2^72z)n

w3i? I4i)n
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Now, if 75j = 76i and if

= 7li73i = 72i74i = cq (all)

7bi<l

then

Q' (n, r) := QkPc) («, r) =

^
1

/ 2fi

(n, n)
•

^ ^y - (c
)

/

2=1

n+r
c

c
(c,"+'-)"“’' (n, r)

,

n—

r

where Q'a = a'

.

The duo a and A on the diagram is called a Bailey pair, In applications, we

apply matrix Q\ • . • . • Qk the vector A on one hand, and matrix Pc/Q' to the

vector a on the other hand and take the coordinates on both sides to get the

identity

TlO TIq ^0

E E -E Ql(no,ni)...Qjt ink-i,nk)A{nk) =

Tljt—0 — Tl\—Tl2

no no

Pd «l) Q' («b «2) « («2) •

n2=0ni=n2
E E

Corollary.

if c' = c then Q' (n, ^) = JJ ^Qi (n, n) • 6nr

i=l

^
1 — co^’’ ^

if c' = - then Q' (n, J') = Jl dQi (n, n)
•

^ ^
-

•

^ i=l
”

if r = n

c(p‘''
, if r = n — I
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For each i, the conditions of (all) give us 3=7-4 or, rather 3=6-3 degrees of

freedom tochoose the parameters 7i, . .

.

,76 3-iid c

.

In the literature we have seen

only the following choice of parameters:

c'q c'q d
73 = — ) 74 = — , 75 = 76 =

71 72 7172

The case {k — \,d = c) is the classical Bailey’s lemma, the case {k > l,c' = c)

gives Bailey’s lemma with iteration and the case (fc = l,c' = |) can be found in the

article [Aga87]. The proof in that article actually gives the theorem for any c', if

A: = 1 and if 7 ’s are chosen by (al2).

Let’s write down a list of possible choices of parameters;

Table 4-1. Choice of parameters

71 72 73 74 75 = 76 d

cq dq d

71 72 7172
J „cq

73 74

7374

dq"^

-

dq cq 74

74 71 719
dq

71759^
7175^' 71

dq 73
1 2C9 75

73 75 <7 73

- 72759 71759
- 717275

74

75</

73

759

- - -
7374

759^

73

7.59

- 71759
-

7173

9

7173 73 7173

72 729 9

7173 74 7173

74 719 9
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Lemma 2. Let

Mq := ni + • •
• + ri£, M\ := U2 + • •

• + . . . M£_\ := ri(, Mg := 0

No := no - Mq, N\ := uq - Mi , . . . Ng^i := no - Mg_i, Ng := no

Ifni,... ,
ng, Nq > 0 then

Proof: Use (8a) i times for N = Ni,...,Ng and r = respectively to

obtain

then use (4) £ times to get

—Niui

and multiply the two identities together. |

Proof of the Theorem: In the proof letter £ will denote A: + 2 of the state-

ment. One can see that if Ti,...,Tg are lower triangular matrices, then, using the

substitutions ng_i *— Mg^2i • • • > ni <— Mq, we get

no no

(Tl • ...-r^)(no,n^) = ••• S ••••Tg{ng_i,ng) =
nt-\=nt ni=H2

Nt-i Ni

= ^ ••• Tj (no,Mo)r2 (Mq,Mi) • . . . • T^(M^_2,M^_i) .

ni-i=0 ni=0
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We also know the inverse of matrix P(J by (alO). Thus we have

P,^{no,Mo)
1 - c' {q)no-Mo

_ 1 -
_

(^Onp+Mo
_
/jxfip-Mo (Lemma^ako (5), (6)

no

(9, np

1

,ATi’
cqno+Mij ,«i

1

Til

cqnp+Af^\

n/!

=: BqB\ • . . . • B£

We can break down Q{ (Mj_i ,
M,) too, where i = 1, 2, . .

. ,
^ — 2:

(7li,72i)M.- (75i9)n.-

(73i>74i)M<_i (9)n.-

(75i9)n,-

(76*9)
M,- _

(7li) l2i)Mi
I • I I I «

(?,73W“‘.74i«“‘)ni (73(.74<)m,.
(76il)"‘ =: Gi • A

Notice that

Pc(n£_i +n£,n£) =
1 1

(cq)2
nt

Therefore

••.Q/-2^c) (noyTit) =

-^/-2 JVl

= E E E P^i ^ (B>OiMo)Qi (Mo, Ml) . .
. Qt-2 {^1—31^1—2) Pc

n^_l =0 nj =0

^t-1 ^t—2 N2

BqBi PcBt^\Dt^2 • “^2 E G2B2D1 y ^
CtiJ3i ,

n^_l=0 n/_2=0 ri2=0 ni=0

since M,- does not depend on {no, nj, . .
.

,

n,} ! Let us start to calculate this multiple

sum from right to left:

1

Ni

^ E U,73i9"i,74H^i)

7^_1_
^”0 ’ 741

iVi (7b)

ni=0 ni=0 «i
1

7419
npZ137319

Ml

Ni
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r:=Ari,7V:=no,x:=:^ ,

[Here the cast for
(
7b) is r:=N^,N:=no-i,xJj^ -

731 741 iVi

(7419^S 7319^0 iVi

<

(-ly

73174

A

dq )

731

Here we used the following cast for q-Pfaff (formula 9 of §2):

a :=
,
6 := 7519, c := 73i9^SiV := N\,n := ni, therefore

ab

cqN-l

7e;i

^ -M -1 “ 7419^Si-®- order to apply the q-Pfaff formula, we must
,Mi+no—Mi

So we can write

Ni

Di Y, '^1^1

ni=0

(711>721)mi / .Ml V^31 741 / ATi / 731741
)

(731?74i)mi (7419^^^ 7319-^0
7Vi

V <^9 /

Therefore if

c q c'q 731741
711 - > 721 -

731
, 7619 -

741 dq
we have

Ni

Di Y, GlBi
ni=0

(71b72l)no

(73b74l)no
• (7619)"°

Similarly, if the conditions

73e74i c'9 c'q

cV 73i 74i

then

for i = l,2, — 2 are satisfied.

Di • ^ GiBi = • (76i9)"° = 9Q (no, no)

n,=0
(73tS74i)no



7U—

7u— 0u
(*)

(oubp) "“(&)
Oii/r\ 7u— 0u ioiy^ouii-)

/«+0«(^
)

. i-
. 6 (X-) /U-OU(^)

^ X T 7 o

7u— Otl

^U— Ou
(^)

9A'Ul[ 9M

‘ bo)
\0w / / ?w / \ ^u I Ou

/ I

(l+^«-^iV^)

= }g

99UIS

7u— Oti ( ^U+Oji^^)
— Ou

^“+°“(to) ^Af)
^ ^

l-7^{^U+OyPp)
1-1M

1
“

T~/»r(^U+®U^/^) I~i0=:a^=:*(Bz) i-Zj^V/u+Ou
I

=: 3 '

7n+oJ>p =-v^^-^M=- M-
J (Ol)

^-1u^ \-7u /ft \ ^ T

iu+Ou"p '

I

0=t-^u

= l~^g (pu ‘M + I“?ti) ^g '^Z

i-iM

‘Xiputj
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Therefore

Nt-i
^

,—qy/d\

BqB£ ^ PcB(^i = (-1)"° q^ °^~7 (expression above)

n/_i=0 {q,^/J,-VB)
no

J
C

c
fcM
V /no-\-ni 1 __ / 2no

no—ni ^ H

(?)no-ni i^9)no+ni 1-P

§4.3. Elementary Properties and Identities Used in the Proof

The formulas here can be found in [Gas90], [And76] or can be deduced easily.

Limits:

lim <

iUf

a—>oo an
1,

1

qU -n^

1
* (71 ? 72)n _ / 1

lino. . VJ2
1

71,72-^00 (71 • 72)
1

^ n^—n ’

if n ^ 1

(-1)" .-n+u ,
ifn = 0.

q'^ 2 )

if if

if n > 1

if n = 0.

lim
o—*-oo

(«)n

(-)\x/ n

X
n

(
1
)

(la)

(
2
)

Hidden zeros:

Let iV > 1.

if n > N + I then
1

H / n

= 0 (3a)
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if n > N then
1 = 0 (3b)

Identities:

In the following, let M, N, n, r be > 0.

1 - __ {q^, -q>/c)n

1-c (Vc,-Vc)„
(5)

(a)n+r = («)r
’ (6)

{x)N_r (^)n ^
(6a)

{q)N-r {<i)n ^
(6b[x=q])

•

H
II

+
(6c)

= pa)

V ' T* J ip
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Identities (6a) and (7b) give

(-ifx'/’-(;).(±)^

=
• (^) .

\x/r

(8a [x=q])

(8b [N=0])

E (H) N

If we take here 6^0 then, by (2) we obtain the q-Chu- Vandermonde formula:

(
10

)



CHAPTER 5

ORBITS OF ITERATED AFFINE TRANSFORMATIONS

§5.1. Introduction

Transformations T(x) := Ax+ b, where A is a matrix and x is a vector are called

affine transformations. (In this paper expressions like T := A or A =: T should be

understood as ’T is defined by A\ In addition, vectors are underlined and matrices are

capitalized). Affine transformations are essential in theoretical mathematics, such as

partition theory, in robotics [Har92], and in image compression [Bar93]. For instance,

images with self-similarities can be encoded by storing affine transformations with

their probabilities and can be regained by applying the transformations in a random

way to any point in the image plane, leading to quick approximation of the original

image.

We present two main results:

First, we develop a general formula to compute the orbit produced by iterating

an affine transformation. To achieve this, the main idea is to compute certain projec-

tions of the orbit. Second, we will use novel matrix products to reduce the number

of array multiplications. One of these products is the generalized matrix product,

introduced by G. Ritter [Rit91].

The main body of the paper is divided into seven sections:

In §2. we give a solution (Proposition 1) using the Jordan normal form of A. We

will give an alternative solution in §2- §5.

In §3. we present a method to find left eigenvectors by solving a system of quadratic

equations. We also show an important iterative step.

61
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In §4. we introduce some essential tools from approximation theory and obtain three

lemmas for later use (Lemma 1,2,3).

In §5. we give an algorithm to obtain formulas for certain projections of smaller and

smaller tails of the orbit (Theorem 1). This leads to a method to compute the orbit

itself, even in the worst case, when all of our matrices with shrinking dimensions are

defective (Corollary 1).

In §6., after some preparation (Lemma 4, Proposition 2), we get a formula for the

orbit, provided that at least one of the shrinking matrices is non-defective (Theorem

2 ).

In §7. we introduce novel matrix products to reduce the computational costs in an

array computer.

In §8. we highlight the two-dimensional case with formulas in terms of both the

traditional and the new matrix products and show how to obtain the usual formulas

for recurrence sequences found in number theory books by specialization.

§5.2. The Solution Using the Jordan Normal Form

Our investigation starts with the following observation:

Let Ahe 3, dxd dimensional matrix and let us suppose that its inverse, denoted

either by A~^ or by exists. If T is an affine transformation, T{x) := Ax + b^ then

its inverse, satisfies T~^{x) = A~^x — A~^b. Using induction, we obtain the

following result:

Proposition 1. For any, positive or negative integer n the identity

T^{x) = A^x + {A)nh, (
1
)
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holds, where T” and are the |n|*^ iterative and multiplicative powers

and respectively, and

'l + A+ ... + yl”^ ifn> 0

ifn = 0

, - (A ^ + A 2 + ... + A”), ifn<0.

If there is a sufficient number (i.e. d) of right or left eigenvectors for A, then

A can be decomposed as L~^DL, where D is a diagonal matrix containing the eigen-

values pj and L is a matrix storing the eigenvectors. Therefore, we have that

T^{x) = L ^diag[p^,p^,...,p'^]Lx-\-L ^ diag[{pi)n,{p2 )n, • • ,{lid)n] Lb (3)

Let us remark that in definition (2), not only can A be a matrix, but a number

well. In addition, we can extend the definition of (0; A)n by setting (x; A)n •=

nx + (0; A)n.

From (3) we can derive some important properties of affine transformations:

First, T is cyclic with period n iff all //j’s are roots of unity, i.e. pj = u!°‘^

,

where u := exp(^) and aj is an integer.

Second, p^ 0 and {pj)n l—fij
either |/xj| < 1 as n ^ oo or \pj\ > 1 as

n —> — oo.

If we do not have enough eigenvectors, then the matrix is called defective. In

this case we can still use the Jordan form J of A to write A as C to get

Proposition 1’. For any, positive or negative integer n the identity

r”(x) = C-l(J”C'x + (J)„C6), (
3 ’)
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holds.

Let

H 1

1

be a (a X a)-dimensinal diagonal block of J

.

Using

the general binomial theorem, write (/< + 1 )” = where := *

Recall that if n > 0 and k > n, then (?) = 0; on the other hand, if n < 0, then

The corresponding block of J” is the upper triangular matrix

CQ Cl ^g—l

CQ c\ ... Cg_2

mm •

• • •
• • • •

Cl

^0 .

How can we obtain the transformation matrix C with good precision? Let us outline

a possible solution. Use Danilevski’s method (see [HamTO]) to obtain matrices B and

D at the cost of 0{d^) scalar multiplication and divisions, such that A = D~^BD

and B is in the ’companion matrix’ form, i.e.

b\ 62 ••• h-l

1 0

1 0

where the unmarked entries are zeros. The characteristic polynomial of B equals

that of A, i.e.
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^ ^
• . . . • (t — /ir)^^-

1 1 * I *1

,
where the row index j runs from 1 to d, while columnLet Vs :=

index k runs from 1 to ag.

The generalized Vandermonde matrix, V := [Vi, V2 , . . • , Vr], or rather its determi-

nant, seems to go back to L. Schendel (1891), quoted by [Muill, Vol. IV, page

179]. It has a non-zero determinant; det V = Ylk>j{l^k~k''j)^^’‘- (The case

ai = ... = ar = 1 is the usual Vandermonde matrix). In addition, B = VJV~^

(see [Ait56, page 136]), which gives A = {V ^D) ^ J {V ^D). In the following

sections, we give alternative formulas for T”(x), which do not rely on the Jordan

decomposition.

§5.3. Projection of the Orbit. First Descent

In this section we give a method how to obtain the left eigenvectors of a matrix

first, and then its eigenvalues. The method itself is not needed in the rest of the

paper, except one property: the first coordinate of every eigenvector is 1.

But first, let us observe that an affine transformation T can always be written

in a matrix form:

^2 • • • Ql(1 — X

0 ... 0 1
. .

1
.

an «12 ... h 'xi'

021 022 • • • h
• • • •

• » • •

X2

•

•

• • • •

0(1,1 0(1^2 • • • ^d,d ^d

•

Xd

_
0 0 ... 0 1 . 11

This has the advantage that iteration of T can be regarded as a matrix multiplication.

Let us examine the orbit generated by T

:

let

—2 • • •

0 ... 0 1

x{n — 1)

1
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Let A :=
[ Ai, A2, . .

. ,
A^

]
be any row vector. We have

A • x{n) = (Aoj) • xi(n — 1) + . . . + {Xa^) • Xd{n — 1) + A6. Fix A^ = 1 and let A be a

solution of the system of quadratic equations

We have {d — 1) quadratic equations of the {d — 1) unknowns A2, A3, . .
. , \^. If we

take fi := Aa^, we can see that solving (4) is equivalent to solving the left eigenvector

problem Xfx = XA. Therefore, we can have 1, 2 , . .
. ,
d solutions A. -

If d = 2, we have two solutions iff (022 — on)^ + 4ai2a21 0-

If d = 3, the solutions for a; = A2 of (4) are the roots of the cubic equation

go{GA)x^ + gi{GA)x‘^ + gi{A)x + go{A) = 0, where

:= «21^13 “ «23®31 + «21«23(«33 ~ «ll)>

gi (a) := j023 - 023^32 + 033«23(«22 - ail) “ a23(ail + ^22 + ai2a2l) + 2013(^23031 +

021022)? G is the transformation that swaps the pairs

(ai2,02i),(oii,022),(oi3,023),(o3i,032) and does not change 033.^

For any solution A of (4) we have

X-x{n) = /i(xi(n— l)+A2-o;2(n— 1)+ . . .+A(^-a:^(n— l))+ A-6 = /z-Ax(n— l)+ A-6. (4)

Iterate this for n — l,n — 2,etc. to get

A • x{n) = • Ax(0) + {fi)n
• A6 =: Rn- (5)

An important note is required here. If matrix A is not constant, but varies, i.e.

A — A{n), and if we require only that the eigenvector A stay fixed, but eigenvalues

^I am indebted to Dr. Ralph Selfridge, who produced this polynomial at my request,

using his APL-based quadratic system solving package.
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fi{n) can change (for example, matrices of continued fractions are like that), then the

iterative step above can be carried through. If we redefine /x” and (fi)n by setting

ju” := ^(1) • fi{2) • . . . • and

(^)„ := ;/(l) ..... fi{n - 1) + fi{2) • . .

.

• fi{n - 1) + . .

.

+ fi{n - 1) + 1, then we obtain

(5) again.

In this section, we have obtained a formula for a projection of the orbit, X-x{n).

Of course, our aim is to get a formula for x(n). We achieve this in §4, but we have

to build some tools first.

§5.4. Divided Differences. Some Notation

The main goal of this section is to prove Lemma 3. below. Let J be an index

set, let xj, j G J be all distinct numbers, k ^ J, •— ~

w{x) := {x - Xk)wk{x) = -
*i)-

Lemma 1. [Abel] If\J\ > 2, then

Proof: The Lagrange interpolation formula gives us that if P{x) is any polynomial

of degree < |«/|
— 2 then

P(x) =
,

Take P{x) = 1, divide by w{x) and move everything on one side to obtain
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68

w'{x) = {x- xk)w'i^{x) + Wk(x)
Wk{xk) iix = Xk

{xj - xk)w[{xj) if X = XjJ ^ k

in order to obtain the result. |

An easy corollary is

Lemma 2. We have the identity

PROOF:

E
fiXj)-f{xk)

Xj-Xk

w'^ixj)

From Lemma 1 we have

which implies

E
j^k

fi^j) - fi^k)

{xj - Xk)w[{xj) e44-/(--^)-e' W [Xj)

1

j¥^k j^k
{x_

= y,^.+f(H)
j^k

w'{xj)

1

w'{xk)
=E fi^j)

w'{xj)

Suppose we are given a sequence of numbers: xq^xi^— The divided difference

is defined recursively in approximation theory:

[^o]y •“ y*(^o)? [^0? ^1 • * * ?

[xi, . . . ,
Xj^^ ^k-\-l\f [^0? ^1? • * • 9 ^k\f

^k-{-l ^0
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We know that [Gel71
]

fi^j)
k

[xQ,xi,...,Xk]f = =^3, where w{x) := JJ(x-Xj),
j=0 *' j=0

and

lim [^0? * • * 9

all j<k: Xj^Xk k\
(6 )

We will need the divided differences of the functions fn{x) := x” and fn{x) := (x)«.

The latter was defined in (2).

Lemma 3. For both functions we have

n—\

^ ^
[xQ, • • • ) ^k—l\fn—l—m

' — [^0? • • • ) ^k—1^ ^k]fn

m=0

Proof: Let jfc = 1, a := x(0), b := x(l). For f{x) := x”, the statement is just the

identity = (a” - 6”)/(a - 6). To prove

n—1

E (^\ urn _ (q)ti — {b)n
Wn-l-mb -

^ ^
m=0

(
7
)

regard the matrix
a”-2 a

”-3
. .

.

«2 a 1

a^-^b

•

a^~H ...

•

ab b

•

•

o6"-3

•

f^n
-3

^n-2

On the one hand, the sum of the entries, if we first add the rows together is

n—1 n n—1

Y(a)n-rb'^ ^ = Y the same = Yi^)n-m-lb^-
r=zl r=l m=0
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On the other hand, if we obtain the column sums first, we have

Q^n—c _ IfTi—c
n

C=1 C=1

same
(^)n (^)n

a — b

If fc > 1, the left hand side of the claim is equal to

n—1 k—1 ik-1

(by (7)) Y
m=0 j=0 j=0

_(by Lemma 2) E jnfn{xj)3 > _

i=0
tu'{xj)

RHS. I

Lemma 3. will be used in the proof of Theorem 1. in the next section. Let us

introduce the following two abbreviations:

[xo, XI, ... , Xjfe]" := [xo, XI, ... , Xk]fn where /„(x) := x" and

[xq, xj,...,Xjj.]fi .— [xQi X j , . .
. , ^ic\fn where • (x)n*

We close this section by introducing some notation, which will be used in the

yi

next section. If y =
V2

•

•

•

'Vk+l'

-Vd-

Vk+2

•

•

•

. Similarly, if A =

- Vd -

is any vector, let y ^
be the tail end of it, i.e.

an

^dd -

then Ayk will stand for the submatrix

«ib+l,ife+l

For instance, a^kl
~

^k+l,£

ak+2,e

<^d,e

^dd-
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Suppose we have a sequence of matrices >l(A:) = [a>jfcjk-|-i(^)j • • • >
Here

dim A{k) = {d — k) x (d — k). Suppose also that vectors \{k) and scalars fi{k) are

given too. Define

p{k,k) := 1,

p{h,h) := A(^l) •a>jki,ifc2+l(^2) if > ^2,

S—

1

p(^k\^ . ,
, f

kg) P^^ji ^j+1 ) ^fk\~^ ^ ^ kg-

i=i

There is a last series of definitions left:

[k \ k]f := [pk]f

[k\k- l]f := p{k, k-1)- [pk^Pk-l]f

[k\k- 2]f := p{k, k-l,k-2)- [pk, Pk-l^Pk-2\f + Pi^^ k-2)- [pk^Pk-2]f

[k^k- 3]/ := p{K k-l,k-2,k-Z)- [p{k), p{k - 1), p{k - 2), p{k - 3)]/+

p{k,k-l,k-3)-[p{k), p{k-l), p{k-3)]f+p{k,k-2,k-3)-[p{k), p{k-2), p{k-3)]f+

p{k, k-3)- [p{k), p{k - 3)]/

In general, let [k \ j] := J^rcik-j) •
• • ’ pU)U^ where the summation

extends to all partitions of (/j ~ j) 3-nd the order of parts counts.

§5.5. Projection of the Orbit. Full Descent

At the end of §2, we established the identity

A • x(n) = • Ax(0) "b {p)n ' A6 — : Rn-

Therefore a projection of the orbit x(n) can be computed. The algorithm below gives

a sequence of square matrices with sizes d, d — 1 , . .
.

,

1 . At each step we take a left
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eigenvector and an eigenvalue, and compute a new projection of the tail of the orbit.

At step d — \ (i.e. at size 1) we obtain a formula for x^(n) itself, due to the fact

that the first coordinate of each eigenvector is normalized to be 1. The rest of the

coordinates, a:,-(n), can be found one after the other by stepping back.

Theorem 1. Let A(0) := A,A(0) := A,/x(0) := ^ from %2.

If

A{k) := A^k(k - 1) - a>k,ki^ ~ 1) ‘ A>ifc(^
- 1), (8)

X{k) = [1, • • • 5 fi{k) satisfy

X{k)ii{k) = \{k)A{k), (9)

then

In addition^ we have

X^( 72
)
— A>jfc(^ 1

)
* Rn{h 1). (

11
)

and
k-l

^>k(n) = -
1) +^>jfc + '^2L>k,j+lU) Rn-l{j)

i=0

(
12

)

Note. As in ^2j A(^) /^(^) obtained by solving the quadratic system of

equations

A(^)^jb-fl (^) — \_ f h\
* *•*

\ /7.\
* A(^)^c?(^)?

't+2(*)
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and by setting

n{k') '=

Corollary 1. Since X{d — 1) = [1], we have

Xd{n) = ^>d-l(”) = Rn{d - 1).

Therefore we can obtain x<^_i(n), a:^_2 («), . . • ,a:i(n) one after the other, using (11)-

Proof: We use induction on k. The = 0 case was discussed in §2 Let fc > 1 and

suppose the theorem holds for A: — 1. Since Xf,[k — 1) = 1, we have (11). Because

(12) is supposed to be true for A; — 1, we have

®>jfe(«)
=

k-2

«>jfc jfc(^
“ 1) ®ik(”

“ 1) + ^>ki^
~~

1) “ 1) +^>ik + Q>fcj+l(i)^n-lO)

j=0

— ^>k,ki^ ~ 1) (~A>jfc(^ ~ 1) ®>ik(^) T ^n{k — 1)) + Ay.j^{n — 1) • x>^(n — 1) + ^>fc+

k-2

+ Q>fcJ+l(i)^n— l(i)

i=0
k-2

= A{k)x^i.{k — 1) + «>ik,ifc(^
- 1) • Rn-l{k — 1) +k>k + y^^>A;j+l(7)-^u-lO)>

i=0

which proves (12) for k. If A(^) and fi{k) are chosen by (9), we have, by the definition

of p,

A(^>fc(«) =

X{k)A{k)x^],{n - 1) + A(^) • f^>ik + ^«>ifc,i+l(i) ' ^n-l(i)^

A:-l

= p{k) • X[k)x-^j.{n — 1) + A(^)^>ifc T ^ ]
pik,j)Rn—l{j)'

j=0
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Iterate this to get

A(^k>jk(«) = k(^)]"A(^k>ife(0) + k(^)]nA(fc)fe>jt + Rn{k),

where

But

n— 1 k—l

m=0 j=0

n—1 k—1 j

«;w = EEE E
m=0 j=0 i=0 Tr{j—i)

(p(Kj)p{h • • , i)W)rHi). • ./‘(0]"-'-"’A(<te>i(0)

(hyLemmai.)

k-1 j

j—0 1=0 7t(j— i)

p{k,j, ..., i)([p{k),p{j ), . .
. , ^(i)]"A(0^>i(0)

+ [p(k), fi{j ), . .
. , p{i)]nX{i)h>i),

thus
k-l

K{k) = \ i]”A(ik>f(0) + [k\ i]nmh>i I

i=0

(13)

In the next section we will show how to reduce the number of steps in the

algorithm of Theorem 1.
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§5.6. Finding the Orbit by Shortcutting the Descent

In this section we show how to find the orbit if we experience that there is

enough (i.e. g := d — k) eigenvectors at step k. (If it never happens, we can still use

Corollary 1. from the previous section to get the orbit).

Dll ••• Dig

In the next two statements let D :=

. Dgi ... D99

and

Lemma 4. If

t

= '^Mj{k)c{k)yj + R = [c{k)
,
c{k) ^]

i=l

'Mi{k)-

»

+ R

then

ELl D2k^{k)

9

9

9

t

= ^2 (D diag[Mj{l), Mj{2 ), . .
. ,
Mj{g)] C)

yj + R D
i=i

r
•

9

9

.1.

Proposition 2. The solution of the system of linear equations

ci(l)xi + . . . + Cg{l)xg = r(l) + R

ci(2)xi + . . . -|- CgifT)xg = r(fT) + R
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c\{9)x\ + . . . + Cg{g)xg - r{g) + R,

where r[k) is in the form described by (15), R is a constant and detC 7^ 0 is

t

Y, (C-^ • diag[Mj{l), Mj{2), Mj{g)] -c)yj + R-

J=1

Proof: Let Dji := (— det[ row i, column j removed from C].

By Cramer’s rule, Xj = (Kl)+fi)-7^ji+(K2)+fi)g^2+---+^^^^
therefore

1

X =
det C

T,l^lDur{k)

Ej=i D2kr{k)

and since C ^ the proof is finished by using the previous lemma. |

Let us go back to step k of the descent described in the previous paragraph. Let

c := A(A;) and

M := g{k) = c • gk+i{k) (16)

Theorem 2. If we have enough, g := d — k eigenvectors {c(j),j = 1,2, ..., 5^} in
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step k of the descent, the corresponding eigenvalues M(j) are given by (16), matrix

C is defined by (I4) then

= ^
• diag[{M{l))^, {M{g))^] • ®>jfc(0)

+ {C~^ • diag[{M{l))n, • • • ,
{M{g))n] • k^k

1

+ K{k) C-1

1

where Rn(k) is given by (13). The rest of the coordinates of the orbit,

{X|t(n),a:jt_i(n),--.,a;i(n)} can be obtained using (11) in %4-

Proof: Rn{k) in Theorem 1. is in the form (15):

Rn{k) = M^cxykiO) + {M)ncb>k + Kik)-

Use Proposition 2. with t := 2, y^
:= a:>j5.(0)5

I/2
'•= t>ki M\{k) :— (M(A:))”

M2 {k) := {M{k))n and R := Rn{k). I

§5.7. Computational Costs. Different Matrix Products

In this section, we would like to rewrite expressions like the one in Lemma 4.,

t

D ^2 {diag[Mj{l), Mj{2 ), . .
.

,

Mj{g)] C) yj. (17)

i=l

Computing T” in the straightforward way requires (n — 1) matrix multiplications.

The formulas in the Theorems are special cases with t = 2 of (17), which invokes
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i + 1 = 3 array multiplications only, plus some set-up costs incurred by the algorithm

in Theorem 1 and the storage of vectors Cy- and matrix D. We can rewrite (17) in

terms of three different matrix products, -i, -2, -3, and reduce the number of array

multiplications needed for iteration to 2. Expression (17) will take the form of

and here D -i C and Y can be stored.

The total number of scalar multiplications using (18) however, is larger than in

(17): g • tg^ + g - tg vs. tg -f g^ (plus (n — l)tg to compute the g powers), but both of

them are superior to the \{g‘^ g)gY'’~^ (or, by Strassen’s algorithm, ^))

scalar multiplications used in the straightforward method.

The definitions are the following:

^[DjiCx{\\...,DjgCi{g)\DjxC2{l),...,DjgC2{g)\...\DjiCg{l),...,DjgCg{g)]

This is extended by

Mk.
T C :=

Rj -X C

[Rk-iC\
,
etc.

The second product is the generalized matrix product or p-product [Rit91],

where p = t:

Mt(l)

Mi(fl)
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+ + |4i(2)A/i(l) + ... + 49(2)Mi(a) |... l>li(<,)A/i(l) + ... + >l9(2)Mi(3)-

(1)A/2(1) + • • • + j4j(1)A/2(5) 1-^1 (2)A/2(1) + . . . + Aj(2)M2(5) |... \Ai(g)M2{l) + . . . + Ag(2)M2{g)

. Ai (1)A/((1) + . . , + Ag(l)Mt{g) |/ll(2)A/,(l) + ... + >l 9 (2 )A/,(fl) |... |yli(3)M,(l)+ ... + ^g(2)M,(p) J

This definition is extended by
ill

Lil2

2 M.
~ ill '2 ^

.A2 ’2 M..
,
etc.

The third product is a kind of scalar product in its first definition:

Bl(2) ... Bi{g)- yi(l) »l(2) ••• y\{9)'

B2(1)

•

•

B2(2)

•

•

B2{g)

•

•

•3

?/2(l)

•

•

»2(2)

•

•

• •
• 92 (9 )

•

•

• •

B,(2)

•

••• Bt{g).

• •

W(2)

•

• •• yt{9)-

5i(l)t/i(l) + . . . + Bi{g)yi{g) + 52(l)j/2(l) + • • • + B2{g)y2{9) + • • • +

+Bt(l)yt{l) + . . . + Bt{g)yt{g)

The extended definition is

111

112 J

3>^:=
ill -3 5^

A2 -syl
,
etc.

Lemma 5. The two expressions, (17) and (18) are equal.

Proof: Use the definition above to get first

c -2

Ml

iMt

— [— ’ y j
’
—

" y_2

Ml

iMtj

,
second

[Di,...,Dg] -iC-2M-iY= '^Dk[c{k)y^,c{k)y^,

k=l

Ml (A:)
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finally

D -iC -2 M-zY =

Mi{k)

Ylk=l

lMt{k)\

Mi{k)
(19)

.Mt{k)\

But the left hand side of (19) is equal to (17) by Lemma 4. |

§5.8. Dimension Two

In this section we give a detailed treatment to the case when A is a 2 x 2 matrix.

a;i(n)' ’«ii «i2 h' ' xi{n — 1)
’

X2(n) • 1

•
' 021 «22 ^2 X2(n - 1)

1 . 0 0 1 . 1

In this case A = [1 ,
A]

,
where A satisfies (au + Aa2i)A = (ai2 + ^<*22)- Let us introduce

A := (o22 - «ll)^ + 4ai2a21- Therefore Ai^2 = fi = an + \a2 i-

Theorem 3. The result of the iteration of the affine transformation

^

[^2(n)J

equal to

1 A2

A2 — Ai -1 1
f\^?

0

VL 0

1 Ai

1 A2

xi (0)
+

(M1 )n 0

372 (
0
)

0 (M2)n^

1 Ai

1 A2

ifA ^ 0, and

/i” — Aa2iTi/i” ^ —A^a2in^” ^
371 (0)

a2infj.^~^ /i” + Aa2in/i”~^ 372(0)
m m

(/i)„ - Aa21 (/i)n -A^a21 (M)n f>l‘

021 (m)u (/i)n + Aa2l(/i)'„_ f>2.
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ifA = 0.

Recall, {n)n = + ... + + fx + so (//)'„ = {n - + (n -

2)fj,^~^ + . . . + 2/i + 1. Of course, = nfx^~^.

Proof: If A / 0 (this is the non-defective case) we can use Theorem 2 to get

xi(n)

X2 (n)

1 Ai

1 A2

1 -1
0

0 fJ>2

1 Ai

1 A2

XI (0)

X2(0)
+

(Ml)n 0

0 (/X2)n

1 Ai

1 A2

bi

62

or

xi(n)‘ 1

11
CM

1
'1 Ai'

A2 - Ai ,-l 1

•1

.
1 A2 .

•2

if^i)
n

(M2)"

- (M2)«

-

a;i(0) 0:2 (0 )

h h
• (

20 ’)

If A = 0 (this corresponds to the defective case), we can use Theorem 1. We

have A(l) = [o22 — -^(0) = [1, A], A(l) = [1], /x(l) = 022 — 02lA = «11 + 02lA =

fx{0) =: fx,

R„(0) = /x"[l,A]

xi(0)

_X2(0)
+ (M)n[l? A]

h

M.
(11) takes the form

xi(n) = -Aa:2(n) + i?n(0).

[1 \ 1]/ = [ix{l)]f = fifx) and

(1 \ 0]/ = A(l) • a>i,i(0) • Ml), ;.(0)]/ = 1 aji AS 02i/(a<)-

Since /(/x) is either /f” or (/x)n, we have by Theorem 1. that

a:2(n) = //”x2(0) -|- (/i)n^>2 + «21«m" ^[1^ A]

xi(0)

.^2(0).

+ «2l(M)n[l)A]

^>1

L62J

®21^m" Afl21^M" ^ d” m"

xi(0)

.^2(0).

+ [«2i(m)o» Aa2i(^)(i + (/^)n]

h

M.
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Since the coefficient of X2 (
0

)
or 62 for a:i(n) is

-A {\a2 if'{fi) + fifi)) + A/(/x) = -A^a2 i/'(^), we obtain (21) or

'xi(n)‘
'1 -A 0 -A^’

_o;2 (n)_ Oil A
.

(m)”
-

if^)n 'xi(O) X2(0)'

— 1

•3

. h h .

«2l(/^)n -

I

Specialization of these formulas leads to the usual expressions for recurrence

sequences in number theory. Let us see how:

11

'«ii «i2 h' ' x{n — 1 )

"

x{n — 1
)

•

1 0 0 x{n — 2
)

1 . 0 0 1 . 1

In this special case Ai = —fi2 ^.nd A2 = — /^i-

If A / 0 then

a:(n) = — 2^( 1)- M 1 M2

Ml - M2 Ml - M2
>= 1

Atl - M2
bi

On the other hand, if A = 0

x(n) = • x(l) — (n — 1)m” * ^(0) + ((n — 1)m*^ ^ + . . . + 2/x + 1) *
• (23)

Finally, if we take b\ = 0 and replace x(l) and x{0) by a\ and a2 satisfying

1 • + 1 • a2 = ^(0 )

m a\ + H2 • OC2 = a;(l),

when A 0,

1 • ai + 0 • «2 = a:(0 )

fi- ai+ fi- 012 = ^(l)i

when A = 0,
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we reach the formula found, for instance, in [Niv91].

a\ • fi'^ + 02 • fJ.2 if A ^ 0

(ai + no!2)/^” if A = 0

The Fibonacci sequence corresponds to the initial condition [x(l), x(0)] = [1, 0], while

the Lucas numbers come from setting [x(l),x(0)] = [an, 2].



CHAPTER 6

DETERMINANTS, POWER SERIES, PARTITIONS

§6.1. Introduction. Notation

The purpose of this chapter is threefold. First we unify the handling of con-

volutions of sequences. This naturally leads to determinants of lower Hessenberg

matrices, i.e. matrices whose entries above the superdiagonal are all zeros. Next,

in section 3, we show how the major combinatorial numbers, for example the bino-

mial coefficients, the Stirling numbers of either kind and the Lah numbers can be

assembled in special Hessenberg determinants.

Our final aim is to show how easily we can manipulate formal power series

using these determinants and by doing so, we also hope to rescue from oblivion

some beautiful formulas of the last century. These Hessenberg series representations

[our term] are not of theoretical interest only: a Hessenberg matrix is sparse and its

determinant can be evaluated relatively cheaply [see the beginning of section 4] . This

section can be read almost independently from the rest of the paper, so the reader

who would like to introduce interesting formulas in his or her calculus class can jump

forward.

We will use the following notation. Given n numbers let

G{i) :— (1 — • . . . (1 — txji)y

F(t) := CQ(t — xi) • . .

.

• (t — Xjj) = CQt” + c\t^ ^
-f . . . -f Cfi—\t -j- Cfi-

84
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The elementary, complete homogeneous and power sum symmetric functions over

x\,. .
. ,Xn are defined by

(Tr := ^ xj^---xj^ = {-lYG{t)//f = (-1)

jl

Cf*

CO

hr :=
1

^ • • • • •

Xji = y: d‘ • •
• 4"

=
^//<%

Y,kj=r

Pr := x\ + . . . + Xn = -r • log G{t)llf.

We prefer Pj It'' to denote the coefficient of t'’ in the formal power series P to the

usual [t'']P, since P • = P//P holds. Let us agree that ho, po, ctq are all 1 .

We ask a little more patience from the reader, since we have to make some

important definitions before we can start our discussion.

For the unsigned Stirling numbers of the first kind and for the Stirling numbers

of the second kind we will use

n
and ^

^
respectively. This notation was

n

introduced by D. Knuth [Knu92]. We define them as special cases with 9 = 1 of

n
:= an-r := 0,xj := \ + q + . . . + ^

j
for the first (cycle) kind,

(
1
)

- 9

II
:= hr-n (xj := 1 + q + ... + q^ for the second (subset) kind.

(
2
)

Although these definitions look unusual, if 9 = 1, by a change of parameters, we

obtain

n + 1

n + 1 — r

— cTj.{xj := j) and
n + r

— hf{x

i

.— J), (
3 )

n

which is [Knu92,
(
2 .6 )]

(or see [Com74, pp. 214,207]).
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Remark that H. Gould [Gou61] originally introduced the q-Stirling numbers

5'i(n,r, and <S'2(n,r, 9) by (3), therefore his definitions differ from ours.

It is instructive to compare definitions (1) and (2) with expressions for the q-

binomial coefficients (also called Gaussian polynomials):

where

m
e

( 1 - 0(1 )

q (1 -9)(1 -r)

[Just divide both the numerator and the denominator by (l—q)^ to see that (^)_. 1

Table 6-1. Various substitutions for xj

Pf* (7j* hf*

= 1}”=1

{xj:=q^-X=l

{xj = j
- l}"=i

la;.
kjillxn

\^J • l-q }j=l

n L-r) (TT‘)
1—^^” / n \ /n-|-r— 1\

l—q^ \n—r)q V n— 1 )n

1 1

1-9’' (l-9)-(l-g'') (l-9)-(l-9’‘)

r n
1

rn+r— li

in—r\ t n—1 /

r n 1 rn+r— li

in—r\q X n—1 Jq

§6.2. Convolution of Sequences

Given two sequences {ur} ^^nd finite or infinite, we frequently are able to

find coefficients gj. j
such that

r

^^9r,sO'r-sbs = 9r,0^rbo + + • • • + S'rjr-l^^l^r-l + 9r,rdQbr = Kr- (4)

s=0

To convince ourselves of the general nature of (4) we collected a few examples

in the following table.
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Table 6-2. Examples of convolutional identities

ds bs 9r,s Kr

(5) Cs Ps rbsO + 1 • (1 - ^sO) 0

(6) Cs hg 1 0

(7) hg Ps rSsQ - 1 • (1 - (5so) 0

(8) 1 Bs{x) r:‘) (r -i- l)x'’

(9) /(x)(») s(i)(») Q (/(x) • i?(x))('’)

(9’) PAy) Ps{x) (D Pr{x + y)

(10) Cs Cs 1 Cr-{-l

(10’) Ps{y) Ps(x) 1
Pr+l{x)-Pr+l{y)

x-y

(10”) Pr—s{y) Ps{x) 1

Identities (5), (6), (7) are true for 1 < r < n and they belong to Newton, Wronski

and Brioschi respectively.

The relationship (8) for the Bernoulli polynomials Bj{x) is valid for r > 0

(j5q := 1). If we write the indices as exponents, (8) can be abbreviated as {B(x) -\-

The Bernoulli numbers can be obtained by substituting

X := 0. They satisfy

(formally) —
. (11)

r + 1

The Faulhaber numbers introduced by D. Knuth recently [Knu93] give a

further example of (4). They are related to (8) and connected by the equation

T,j=0 (2k+i-2j)^t^
= fc > 0 and = 1.

Formula (9) is, of course Leibnitz’s. Identity (10) is satisfied by the Catalan

numbers, where Cq :=\ and

Cr :=
1 '2r'

r -|- 1

1 — y/\ — 4x

2x
llxr
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Polynomials that satisfy (9’) or (10) are called of binomial type and Newtonian respec-

tively. The former ones are related to umbral calculus [Rom78], while those satisfying

(10’) lead to divided differences, Vandermonde determinants [Hir92]. Equation (10”)

is the Christoffel-Darboux formula for orthonormal polynomials.

In our last example we would like to rewrite a sum as a product, or the way

around [And76, page 98];

OO 1

i(?) :=
ga„,” =

On one hand.

9-
L'{q) Yj'^anq

n

L{q) Yjttnq^
’

on the other hand,

OO 7 fi—\ OO

, • PogL(,)l' = ,E = E ( E 9™"

n=l n=l \m=l

OO OO

y] I y] n6n 1
9^ =: XI

AT=1 \n\N I N=1

N

Therefore sequences {dr} and {or} are connected by an equation of type (7), namely

Naj^ — diajv_i — ... — — djyao — 0.

After the examples, it is high time we solved (4) for br (or ar). Write

91
,
1^0^1 ~ 91

,
0 <^ 1^0 T 7^1 ,

+ 92,2^0^2
~ ~92,0®2^0 + ^2i

9r,lOr-l^l + 9r,20r-2^2 + • • •
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To obtain br, use Cramer’s rule, then bring the last column forward; Or can be

obtained similarly.

dlfiboai - K\ 51,1«0

5r— l,r— 1^0

T “_
9r,0^0^r ~ 9r,\^r—\ • • • ffr,r— 1^1

(-«o)’’ 31,152,2 ffr.r
(12 )

The numerators in (12) are determinants of lower Hessenberg matrices. Let us remark

that every real matrix can be transformed into a Hessenberg matrix using a succession

of Householder transformations (Weyl reflections).

Newton’s formula, i.e. (5) and the identity

F{t) = CQt^ + C\t^ ^ + . . . + C71 —

give us for the roots {xi, . .
. ,

of F[t)

Pi* — ... “1“
^fi

1

(-co)’

Cl CO

2c2

3c3 C2

CO

rcr Cr—l • • • C2 ci

(13)

and

1 1

“h • • • H—r —
1

X
1

Xn (—Cn)

^n—1

2c„_2

3cji—

3

Cjj_2

Cn

(13’)

rCfi—r ^n— r-hl * * * ^n—2 ^n—1
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1 1

provided cq and Cn are not zero. Using (13’) we can express, for example, + ^ +

. . . + ^ by the Stirling numbers of the first kind.

Several determinantal expressions exist for the Bernoulli numbers. If we apply

(12), we can obtain a possibly new one from (8):

Br = (-!)'

Let us mention that (11) can be written as

By exchanging the role of {or} and {6r} in (5), we can get

1

If A is a n X n matrix, its characteristic polynomial det(t/ — A) is equal to +

^JJ_j(-l)^(Trt"“'’ by the Cayley-Hamilton theorem. For example, cri = tr{A) = p\
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and (Jn = det(A). Therefore we can apply (15) to evaluate it. Naturally, here

{x,-}, j = 1, . .
.

,

n are the eigenvalues of A, and pr = tr(A'’) — x^j-

Identity (15) and similar ones obtained from (5), (6), (7) are not new, see [Mac79,

page 20] or [Kri86, page 55]. When we apply (12) to these three identities, we have

Kj = 0 and bo = 1. We will change the meaning of Cr from now on, namely, set

Cf* I— ^r,r^0* Let

d^tm[9rs^r—s\ •
—

91,0(^1 Cl

(16)

1

9mfi^m ••• 9m,m-l^l

Note that we index the rows r of the m x m matrix from 1 to m, while its columns

s from 0 to m — 1. If m < n, we have

Table 6-3. Determinantal relationships

Cf 9r,s aj, iij:=r-s detjTi

—r 1 Pj TTl\ * hfYi

r 1 Pj ml • am

1 1 hj

1 1 hm

1 1 + (r - l)5s0 Pm

1 1 -t- (r - l)^s0 hj

From Table 1. and 3. we can gain thirty identites; the expression for pr{xj :=

j
_ I) will be different from (11’). In the next section we will build a three level

hierarchy among the terms in the expansion of detm, the third level will be the

determinant itself.
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§6.3. Hessenberg Determinants and Combinatorial Numbers

We will expand the determinant (16) and reorder its 2”^“^ terms. As an illus-

tration, take the m = 4 case:

51001 Cl

52002 52101 C2

53003 53102 5320l C3

54004 54103 54202 54301

Its expansion is

- C1C2C3 5-40 04

+ C1C2 530 543 0301

+ C2C3 5^10 541 0301

+ C1C3 Q2Q 542 o^

- Cl Q2Q 532 543 02af

- C2 510 531 543 020|

- C3 giQ Q21 542 020^

+ 510 521532 543 o|

The coefficient of • • • a^) in a general term (where kj > 0) is of the form

^[cr; 9r,s]
= (-1)^° • {ko of the c’s

)
• gj^o • (^ - 2 of the p’s

)
• gm,i, where

i := k\ km (
1 "^)

and kQ := m — Special cases of the following lemma play an important role in

calculations:

Lemma 1. Let h^h\^h2 be arbitrary functions from {0,1,..., m} to C — {0}. We

have

t [/i(0)cr; h{r - 5)pr,s] = t[cr;gr,s], (a)
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and

t
hjr)

Mif)
dVyS

^2(0)^2(l) • • • h2{m - 1)
^

hi(l)hi{2) • • hi{m)

hi{r)
Cr; 1 'y~^9r,s

^2(s)

In particular, we have

(b)

t[cr; {r - s)grs] = • t[cr, grs], (a’)

t[cr, {r — s — l)!5rs] = (0!)^i(l!)^^ • •
• (m — l)^”* • t[cr,grs], (a”)

and

t

(r - 1)!
Cr!

; 9rs
SI

= t[rcr‘,grs] I

The following lemmas will have their applications in the next section.

Lemma 2.

1

mi
detm (r — s)\grs(^r—s — detfn [grs^r—s]

Proof: Since t
r\

^r] ~^9rs^r—s

(b’)

= tlrCr^rgrsCir-s] by (b’) of the previous lemma, we

can factor out r from row r, r = 1, . .
. ,
m.

Lemma 3. We can change the dimension of the matrix by the formula

detm+l[br-l^sO + «r-s(l “ ^so)] = c?e<m[(^0«r “ &rao)^sO + ar-s(l - ^so)]

Lemma 4.

1

ml
detffi+i br-l^sO +

r — 1

s — 1

(r - s)!ar-s(l ~ ^so)

detm+l [br-lbsO + «r-s(l “ ^so)]

Proof: LHS = [Q(^ - -s)! ((^0«r - ^>r«o)^sO + «r-s(l - ^so))]? RHS —

detm[{boar ~ 6r«o)^sO + «r-s(l ~ <5so)] by Lemma 3., and they are equal by Lemma

2. I
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Let us call those terms which have the same

type). Since

Y^jkj = m,

i=l

)
factors a cluster (or

the elements of a cluster belong to the same partition of the integer m. Next regard

the superclusters of terms for which i is the same. In the m = 4 illustration above

the two a^a\ and the term belong to the same £ = 2 supercluster.

By carefully choosing the coefficients c^, fr^dr^s ^nd calculating the cluster sums,

we obtain numbers which are well known in combinatorics.

Table 6-4. Special Hessenberg determinants

Cf* 9r,s fixed ^2i=consi
c v^m
*^3 - l^i=l

(19) -1 1 1 1
A/ • • • •A/ *

(™-“/)
2m-l

(20) -1 (ki+.-.+km)'- iA;i In

1 2e-l )r — s k >
^ ...m

A/ 1 • • • vA/fT^ •

(21) -1 1 + (r - 1) • ^so ^ k^ k '

—
A/

1
• • • • A^ tn * (7)

2^-1

(22) -1 ("7')
ml

hellm^t Ym

(22’) -1 r;')
ml {”) Bellfxi

(23) 1
ml ml—

r

J

(24) -1 ml pa-lfrn)

(25)
nr* o ml m\ /m—l\

irw-i)—

r

7 — S
k '] ! • • . A/ fTrl

The numbers in column S\ are the sums of coefficients belonging to • • • Urn ).

To obtain the numbers in column ^2, first take a\ := a2 . .«n •= 1 {c^xcept in

(22)), sum for those m-tuplets {ki^ . .
,
^km) which satisfy (17) and (18), and finally

apply known identities, which can be found in [Ego77, p.l84], for example.

Let us give an example for the usage of Table 4. The number of permutations

[partitions] of a set of m elements that have kj cycles [classes] of length [cardinality]
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j is the quantity in (23,Si) [(
22 ’,SI)] respectively, and if we sum these numbers for

those m-tuplets [k\, . .
.
,km) which satisfy (17) and (18) we obtain and

Instead of giving a rigorous proof of the table here, we just indicate that once

we establish (19), (21) and (
22 ’), the rest can be obtained using the mentioned special

cases of Lemma 1.

If we do not substitute aj := 1 in (22), we obtain the partial Bell polynomials

belljnl in 82 - Their sum in ^3 is the complete Bell polynomial Ym- (The Bell

numbers were marked as Bellm in Table 4.) This way we proved the fact mentioned

in [Com74, p.l35] that

bellm,t{aj •= 1
) = {Tl’ “ i) = ^"*"^(7)

(idempotent number).

bellm,e{aj := (i - 1 )!) = [7]> ^ellm,t{aj := j!) = w(7-l) number).

We have two remarks to make at this point. First, if we want to assemble
[7Jg 5

then (by definition
(
1 )), it is enough to change Cr := r to Cr := 1 + ?+... +

in (23). Second, since Hessenberg determinantal representations are not necessarily

unique, we can set our additional goal to find the most aesthetic one.

We can use the table to obtain identities like

(<=1 +
^1 1 t t
A/ . fi'jji •

mm
m

= det

ai OQ

02

Om—

1

am ^m—1

• •

OQ

02 a\
_

, (26, from (19))
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E ” [k\ + • • • + km — 1)!

k i
/t . . . . A/JTJ .

= det

ai

2fl2

ao

02

(m - l)am-l

mam ^m—

1

a 'fnm

OQ

«2 «1

.

(27, from (21))

E
J^kj=Y,jkj=m

ml hV'
. km * V ^

= det

/lOl

/202

OQ

/202

fm—l^m—l

fm
m

km
(-ao)‘"aJ‘ • a -mm

2ao

(m - l)ao

frn.O'm fm—l^m—l /2«2 /lOl

. (28, from (23))

Formulas (26), (27) and (28), (with oq = ±1, /j
= 1 or j) can be found in [Mui28,

pp. 703,712] (with some misprints). Let us remark two things. First, if m is a prime

number, expression (27) = = a\ (mod m). Second, if we take oq ~ ~l?oi ~

... = an = 1 in (28), we get m!-(cycle index of the symmetric group Sm) (for a

definition, see [Pol37).

§6.4. Operations with Power Series Using Hessenberg Determinants

Expression (12) was obtained by Cramer’s rule, therefore it can be looked upon

with great suspicion by computation-conscious people. But our matrices are sparse
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and by expanding them by their last row, we see that they obey a rule of type (4)

too, namely

det Mk = 9k,k-l^l <iet Mk_i - gk,k-2^k-l^2 det Mk-2 + • • • +

+ • • • C2ak_i det Mi + {-l)'‘~^gk,0Ck-l ‘ (29)

This makes their computation possible in 0{k^) steps, a much less formidable number

than the 2^“^ terms in their expansion would suggest. Moreover, if we possess O (fc^)

processors, they can be evaluated in O ((logA:)^) steps [Lak90, page 443].

The calculus of residues [Ego77] is another (and powerful) tool to describe oper-

ations on series, but the Hessenberg series approach is easier to use, in our opinion.

Let us start our treatment of the power series with Faa di Bruno’s formula

(1855) about the power of composite functions. This formula survived in the

modern literature [Mel73, page 214]. Look at (22) in the second table to obtain

(g o /)(-) (x) =

m!
'tn

= det

-1

f"(x)D -1

(m-2)^(m-D(^)£) -1

iZzl)n-)D
applied to g (/(i))

,

(30 )

where D is the differentiation operator, i.e. /(®"*’^)(x).

We can use this formula to substitute a power series into another one. If /(x)

and g{x) are power series, namely /(x) = o,kX^ and g{x) =

oo

h{x) := (g o f) (x) = 6q +
m=l

(J »/)<"’>(0),™_
. JU ~

oo

= bo+Yl Cm^
m=l

m
m\
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where

a\X —

1

a2X

^m—1^

_ 0,m^ ®m—

-1

U2X aiX _

6, (31)

where X is the indexing operator, X^bj^ =

Let us now discuss the (compositional) inverse of a power series. Let w =

f{z) := inverse be z = g{w) := (notice that

we shifted the indexing). Then [Dav66, page 273]

bm “ (“ 1
)

m 1

2m-f 1
a

E
{jn + 1 + . . . + kfxi — 1)!

(m + l)!A:i! • • • km\
a •mm

(32)

For example,

64 = —
g

f— aQ<i4 + 6ciq<ii03 + 3<XQa2 — 21 o.()(i^a2
Oq

Observe that the coefficient of a'^ is the Catalan number Cm- If we set oq •= “1

and ai, . .

.

,fln ;= a:, the S2 sum we obtain is an orthogonal polynomial bm{x), since

it satisfies the three-term recurrence

(m -f 2)
• — (2m -f l)(2a: -f- 1) • bm{^) + (^ l)^m— l(a^) 0?
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with the initial condition bQ^x) := 1 and 6i(a:) := a:. After a little calculation we

notice that bm{x) is a Gegenbauer-type orthogonal polynomial, therefore we can

obtain its generating function

X

(l — 2{2x + l)u> + 2

//wm—1

We now rewrite the previous expression in a Hessenberg determinantal form.

Actually, let us try to solve the following, more general right inverse problem :
given

the power series h and /, determine g so that g o f = h.

Suppose h(^z^ — z • (If ^0 “ I and cj ~ 0, j 1,2,..., we have

the original problem about the compositional inverse). We can use (31) to set up a

system of linear equations, then solve it for bm (like we did in the beginning of section

(m-f2)(m-i-l)

2). The denominator is (— l)^aQ ^
;
the entry of the numerator determinant

at row r, (r = 1, 2, . .
.

,

m + 1), column s = 0 is while for (s = 1,2,..., m) it is

Y^jkj=r-s,J2^j=^
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By factoring out Cq ^ from column s, we can regain the denominator (— l)”^aQ

of (32):

m„2m+l

64 =
1

a 15
0

CQ OQ

Cl 01 0^

C2 02 2oqoi Oq

C3 03 2oq02 + aj 3oqOi 4
C4 04 2oq03 -H 2oi02 3oq02 + 3oqo| 4oqOi

000

1“ ~Q

Cl 01 OQ

C2 02 2oi OQ

«o
C3 03 2o2 + Oq ^0^ 3oi

C4 04 203 + 2oq ^0102 3o2 + 3o^^o

UQ

• (33’)

In the last formula, fcg < 0 and ~
^ entry. Sometimes, presentation

(33’) can be simplified. For instance, for the inverse problem, we have

bo
«0

61 =
1

Oq
62 =

Oq

01 OQ

01 OQ -1
, bz = — 02 5oi OQ

02 2a\ 4
03 4o2 01

64 =
1

a9
0

ai OQ

02 2a\ OQ

03 8o2 7oi OQ

04 603 3o2 a \

^>5 =
«̂0

a\ OQ

02 2a\ OQ

03 7o2 7oi OQ

04 1303 14o2 3oi OQ

60305 604 02 a\

(33”)

a much more pleasing form than (33’). Although this kind of presentation with

positive integer coefficients is not even unique for 64 and 65, it does not seem to exist

for 65 at all.
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Our guide in the rest of the section is Sir Thomas Muir’s four volume book

[Muill]. This is a list of results of articles written about determinants in the last

century. Proofs are not usually given, the reader is referred to the original articles.

It was Spottiswoode in 1853, who found the following formula for the deriva-

tive of the quotient of two functions:

f)"
= (-l)

fk+1

where —

9

9

9
(k-1)

L 9

f

f

m (‘)/<‘)(x)

/

(34)

Using Taylor’s formula and (34), we can obtain

f{^)J m (-/(o))^

1 detMfc+i(0) ^fc^ provided /(O) + 0.
k\

(35)

Twenty five years later Glaisher realized that if f{x) = ^

9{x) = ^k^^^ then in (35) can be simplified (we gave a proof in

Lemma 4 of Section 3.):

Ef=o _

Er=o <^kx^

1 ( ^detMi,

«0 V ^ (-ao)'' /

where Mk =

boai — biOQ

^0«2 - ^2«0

ao

ai

bo^k-l - bk-\(i0

bo^k - bkO-0 Oik-1

ao

ai J

. (36)
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Observe that in (36) reduces to (26) if we want to calculate the reciprocal of the

power series /(x).

Once we can compute using (36), we can integrate it to obtain log/(x)

and then

oo

1 +
ib=l

fV

jfc=l

det Mfg.

k\

In (37) and (38) the matrices Mf. are of type (27) (with uq := 1) and (28) (with

ao := —l,fj '= j) respectively.

Let us conclude with H. W. Segar’s beautiful result (1892) from [Muill, vol.

IV., page 236] about rational powers of a power series;

oo
n
m

k=0

= a

n
m
0

oo

i +E
det Mjf. j[.

X
. klm^aQ

where oq ^ 0 and =

nai

2na2

—mao
(n — m)ai —2mao

(k — l)nafc_i

knaji ([At — l]n — m)a^_i

*
. —(k — l)mao

(
2n — [k — 2]m)a2 (n — [fc — l]m)ai

(
39

)

n

Notice that the only non-integer exponent (branch point) is at the leading Cq factor.
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