CHAPTER 1

Generalized Dedekind eta products

In [Bir75], Birch asked for a simple H.nosaﬂmaos and proof for Ramanujan’s
‘40 identities’. By expanding on an idea of Rangachari [Ran88! we are able to
predict all possible identities having various forms. In particular we discover that,
for Hauptmoduls on G C T of genus 0, each coset of G in I' corresponds to a
particular collection of identities. We can, of course, .gmw proceed to prove all of
these identities without too much trouble using the theory developed here. This
‘would be tiresome if we were to carry it out for all of the new identities found, and
in fact ﬁ.w:wdw are undoubtedly many more identities lurking among the Riemann
surfaces of higher genus; we therefore prove one critical identity to give the general
idea of the methods employed. While studying these functions, we also obtain
a simple criterion which tells us that we only have to check the two points 0
and oo to know when functions exist on X,(N}. The functions we study are
combinatorial objects, and as corollaries of the modular equations we get results
about partitions. Modular equations also find applications in the study of singular

moduli, elliptic curves with complex multiplication, and class numbers of orders

in quadratic imaginary fields.



1.1 Some Background

Definition. Let

N5.0(7) 1= e™ P2 (R I a-zm) I a-am), {1.1)

m>0 m>0
m=g{mod &) m=—gl(mod 4)

where z = €277 7 € M, and where P,(t) = {t}? — {¢} + £ is the second periodic

ul“
8

Bernoulli polynomial. Note that 7559 = 2T (1 — z%%)2 = 5(87)%, so that these
1

TL

functions generalize the usual Dedekind eta function. The functions (1.1) are in
fact a gencralization of those appearing in the Rogers-Ramanujan identities, which

in our notation are written as n;, and 75,. The class of functions we study here

15!
firy=TI ms, (1.2)
SN :
0<g<t
where

32 fg=0o0rg=4/2
c (1.3)

Fa otherwise.

Ts.9

We proceed to find out how [ transiorms under an element A = mm wv belonging

to the modular subgroup To(N); later we shall find that the subgroup

a=d=1{mod ZVHT

DNy = { (22) € To(V)

plays a crucial role in the study of the functions (1.2). We may assume without

loss of generality that (a,6) = 1, as in Newman's paper [New57]. Meyer ([Mey57]
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and [Mey60]) and others ([Die57,1},{Die57,2),[Sch74]} have worked out the trans-
formation law for 7;, under any A € T, the full modular group, and we quote the

result below, {ollowing the notation of [Sch74]. Put

& 1 T ﬂ.‘ﬂaz. . u:;.«.:;
dm_,wﬂ = ag(h)e P(§) HH (1- %mﬂ ) HH (1-¢; he™s ™),
m>Q m>»0
m=g{mod §) m=—g(mod &)

where (g 1s a primitive § ’th root of unity,
Bz} = () = (1.4)

is the first periodic Bernoulli polynomial, and
(1= ¢M)erP(®) ifg=0and h 20 (mod 6)

ap(h) = (1.5)

1 otherwise.
We can assume without loss of generality that 0 < g < 6.
1.2 The transformation law
Our ?soﬁou.m are related to those of Schoeneberg as {ollows:
15o(7) = 7,3(67). (1.6)

Thus to get n;,(AT) for A € T'y(8), we need Sﬂ.@bi = amwT»umlﬂ where 4; =

(394 10 0, thn by 587 we v

o



where
N (Y 1.8
7= alf), (1)
da 6d
tm.h = lﬁuwﬁ&.vlwl .NUMA % v MMAQ T Ou_%v A“_,mwv

and s(h, k; z,y) is the Meyer Sum, a generalized Dedekind sum, defined by

l_l
s(hyksz,y)= 3 iﬁ@f& { . c.é

pmodk

Equation {1.8) translates into

a

oo
=)
tq'h

éb df \0 h

so that ¢/ = ag ,and k' = &bg. Note here that if ¢ = 1 (mod &), then ¢' = g and
K = 0 mod & that is, A% takes (7} to itself mod ¢ and thus takes 75, to itsell.

This observation suggests the use of I';(N). ;From (1.8) and the above remarks,

we have
nsg(AT) = 7EA(6AT) = lY(A67) = emiraoylo(67) = €T Posng0,(T).
Hence

Theorem 1.1

— _ _, i s,
Imdm_hm ﬂ:lmdmnh beeTHbeThs,
)N 5IN
g §

We need to find g5, mod 2 in order to find necessary and sufficient conditions for
flr) e 5 AH,HQ/JV. By the reciprocity law for the Meyer sums [RG72], we have

g aé _ g & ag, ¢
Qwuevltla.muuﬁ|v.!ww9|ﬁ.mm %V M%Q.muuﬁu



Now suppose that 4 € I';(N), so that e = 1 {(mod N). Then a =1 (mod §) and

hence P (%) = (%), as P, is periodic mod 1. Thus

ba g, 6d _ ag c b g & g c
= —Hi= — — s(= .r - — — — P ()= —F5(0
_‘Em.@ nkﬁwﬁ%vl*n ﬁ.mUwﬁ%vl_IM ﬁ% _.m Ou &UNA%V Dﬁ.ﬁyuﬁ%v %Q wﬁ v
dad _  ag c g & g c
= —FP{=)+2s(=.a;= - —F{=)—- —
o Tl )+ 250 0= 2hR(G) - g
c g &b g c
= 98 @l ) —pty =
hﬁ%.gu%4 vtml a wﬁamv @%Q.u

where we used ad —1 = bc in the Jast step. We now expand and simplify the Meyer

surn:

et cv g
G- 2(())((+9)

v=1 a

The sum is actually from v =0 to v = a — 1, but Qm: = ( when v = (. Hence

i v cv &b
”M .| |.| w
E_bW 52t5)) Tt PG

a

Note: (a,6) = 1 means a = 1 or 5{mod 6), which implies that a? = 1 (mod 24).

By [Sch74}, if ( := e™#60, then (M = 1, where N, : iﬁ

Lemma 1.1

(" =¢

Proof: It suffices to prove that ¢2 = 1 (mod ;).

Ommm#;wmun?QHMHﬁﬁom.}cmwm%mw?:ommﬁnvnmmwﬁgog
12N).

Case 2: (N)6)=2. a=1(mod N)=a=14+jN=a* =1+ N + 2N =1

il

(mod 2N ), and @* =1 (mod 3 }, s0 ¢ = 1 (mod 6N).

H
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Case 3: (IV,

6) = 3.

= a* =1 (mod 4N).

Case 4: (N,6)

1 (mod 2N). O

=6. Now NV

Now N, = 4N. a? =

1 (mod 4), and a* = 1 (mod N }

1t follows from this lemma that

lmnmavlJ

.bl

—\.ln

(G

Now 6 | Nand N |¢ = 6 | ¢, and (a,¢) = 1 = (a,£) =

a

= 2N. Again,a = 1+5N = a? = 1+ 2N+ N =
cv g
T bé P, d2
Fet5)) gt othls) (mod2)

=1, so that v runs

through a complete residue system mod a as v does. Hence

g
fsg = abd Py(%

5 TG

a—1

% T (D) - (L4 D) ot

r=1

- Baut this last term is zero, since

where we have used the identity MU%

S-S+ -3
a—1 1
=+ (€ -5)e-1-([F] - [3]).

H _ = [az] in the last step. Now —ﬂ =0

=0 a

since 0 < g < 6, and Tm_ = 4(e ~ 1) since @ = 1(6). Hence

Thus

“49)) =2a-1) - Fa—1) =0.

)

ﬁc m_ 1

o 2
gl mg) (med2)

NG+ 5)-

v=1



Note that Za % and 2a MU—Mln -+ ﬂ ate even integers, so that

= b L) - f a1~ Sa2a—1) (mod2)  (111)

foe = 5§’ 66 572
g ac g 1
= n@mﬁuﬁwv l@.m.?lswl WAQ%S (mod 2), (1.12)

since a* = 1 (mod 2).

1.3 A useful criterion

Now recall that (with the assumption that a =1 (mod N)},

f(ar) = Tl ngg(ryeserivosss (113)
BN
. \.mﬂumﬁ.MuE.m:..m. (1.14)

Setting the coefficients of ab and of ac in ¥ p4,75, congruent to zero mod 2 we
get, by (1.12):

5 5%3,@ =0 (mod?2) (1.15)

|V
g

ST 8P (0)rs, =0 (mod 2). (1.16)
5|IN ‘
g

We now claim that these 2 congruences make ¥ pg 75, = 0 (meod 2). By (1.12),

<

this amounts to proving

Lemma 1.2 If (1.15) and [1.16) hold, then

> {a— :mﬂﬂm_q =0=% ——*r;, (mod 2).
§N 6 v 2
)



Before proceeding with the proof, we shall make some useful remarks and trans-
formations. We can clearly expand 74, into

Ns5.g = MNgMINg+E - TINgt(6-1)¢ (1.17)

The only detail left to c¢heck is that the multiplier systems on both sides agree.

This amounts to proving

Lemma 1.3

Proof
g’ o\ ¢ 1
NS o) =N T (%) -5+
g'=g+mé N g’ =g+mé N 2 6
m=0,1,....6'~1 m=0,1,...,6'-1
51 ? 5§ 1
_ — g+ mé g +m 1
N2\ TN ¥ T
i §-1 -1 ._2..
= = > [g*+26gm + §*m? — > (g+mé)+—¢&
._a. m=0 m=0 m
g? 5g &2 , § ‘
= T84 Z(F 1)+ —(&—1)6(28 - 1) —gé — (& - 1)
S 2 1)+ (6 = )88 = 1) — g8 (6 - 1)+
g2 é N &N
= — L —(26—1)— — | = g&"+ —
gt g 1
= (L _-L42
5 576

The uniformizing process of replacing every § dividing N by N itself is useful

in proving these lemmas and leads to the following formulation:

-%T.u = m Ts.q T_.v:.m = mdwﬂh:
aq\

5N
g
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where

by = MU Ts,q'

h_“m_._vu.z.%
m=0,1,....6'—1

from (1.17). Sometimes we shall abuse notation and replace the delimeters on the

summation sign by the single letter g

Lemma 1.4
g g’

> 6P, m.m.v rog =2 NP, Tﬂv 22

SIN Iy

g

where 1, = 3,0 Ts -
Proof.

Mm@m vJ_u = MMZ%&WIUJQ

EIN SN g
g 9

= Y|ne @mv QM,;L

h_.

e lta

.Q._
- MU Z.NUMAMWVH@.:
uQ\
where lemma 1.3 us used in the first step. [

Lemma 1.5

Proof.

Doty = X ig
g g §|N.g
2g'=g4mb
- M M Ts.9
SN @Ngm
g agl=g+mib
—_ ﬂ 1
- hl\.mﬂm.n.
6N
g
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O
We remark that 3" %rs, = 3 % F& . and ¥ rs, = 3.1, Their proofs paralle] the

proof of lemma 1.5 and are therefore omitted. Lemma 1.2 then becomnes

Lemma 1.6 If (1.15) and (1.16) hold, then

1) Mu@@ =0=) FWI@HH (mod2).

h-

Q

Proof: Lemma 1.5 and the congruence (1.16) give
1
5 M.ah., =0 (mod 2) (1.18)

Also, (a,6) = 1 implies that @ — 1/2 is an integer, so that the second congruence

of the lemma is proved.

For the first congruence, lemma 1.4 and the congruence (1.15) give

0 = M 2@&&55 (1.19)

M2m||m+@u G.MS

M@H Vg + = MT (1.21)

12

Mxmﬂ —¢)ty  (mod 2), c.§

g

I

where 231, =0 by (1.18). Hence
bs

S (g —g'N)ty =0 (mod 2). (1.23)

Notice that all of the ., are integers, because the assumption that the weight %

is an integer means k = 3 Tgn 750 = 5o € Z, and (1.18) implies Yty € Z. Thus

12



ty € Zif Niseven. ({pand ty were the only two exponents in “doubt” of being
integers). Thus 3oy g'ly € Z
Case 1: N odd. a =1 (mod 2) and a = 1 {mod N) means a5t is an even
integer. Hence 57 32, 9"ty = 0 (mod 2).
Case 2: N even. »_ g'ly = Mum}_@_ = N> _ g'ty, by (1.22), and the last term
g' g’ g’

is an even integer, since N 1s even. The first congruence follows from 2 = 1 {mod

2) for any 7 € Z, and from the fact that each 1, is an Integer. O

Theorem 1.2 If (1.15) and (1.16) hold, then fis on T1(N).

Proof: Lemma 1.2 implies 3 5,750 = 0 (mod 2), which implies that the root of
unity in (1.14) is 1. O

Remark: [New57] obtained a similar result for the usual n-products on To(N).
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1.4 The orders at the cusps

A general cusp for I'y (V) is given by x = W“ where ¢ | N, and (A, N) = (A, u) =
(40, N)=1. Let Aq = mb MMV e ', so that Ady — ueby = 1. Then A takes ico to

2 = k. Because g, (A7) = d%maml“ we need to simplify 6 At .

He

SA &b, 5b
AT = ’ T = l.lll:m»ﬂ.m =
per + dy
pe  dy
SAT + &b,

[3) ’
per +dg — by

where D = {6A, pue) = (6,¢), since § | Nye | N, and (A, N) = 1 = (g, V). Let

mo”H .m%“ msmmo_ﬂw.mmuoawwo<m,
b$ﬂ + 6by
€ [ €
D7 +d5 - b5
%Dﬁb..ﬂ —_ @v + &.QW. ~+ %TO
eo{ D7 — b) + déy

Dr—t dabtdby
%o 5/D + /D

€ Dr—b » dég

07§/ 7 §/D

8555 + b+ boD

- Dr—b
€575 + dA

bAT =

6o Ao+ 8D | /Dr—b
6/ D

€ dA

Dr —b
§/D )7

Ag
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and we note that now Ay € ' because §odA — eqAb—¢ubg D = A(dbg— bep) — epbo D =

Ady — byegD = Ady — bype = 1. Therefore

Neg(AT) = 7id(8AT)

(s) Dr -1

= 70| Ao m\|b
E:2) (s) b.ﬂ - @

= ¢ E_:QPPQ %\_O .

since AL(7) = Amh,.d. Consequently,
. il 5 Dr—t%
n54(AT) = eminboe” wmlbmvﬁﬂqv + higher order terms
= (2R A

where ( i1s a root of unity. Hence

Theorem 1.3 The order of f(A7) in the uniformizing variable TN s

N1 . D?_ ,bog
LR
g

N (6, ¢)? Ag
I|M|M e £ (6, ¢€) Tos

Corollary 1.1 If the order of { at 0 and at ico is en integer, then [ is on I')(N).

Proof: For the cusp k = 0 ~ 1, the above formula reduces to (1.15), and for the

cusp k = ico ~ %, the above formula reduces to (1.16). By theorem 1.2, the result

follows.



1.5 MNew ldentities

Throughout, we use the notation 7, := n{m7).

N = 5:  Here G(rn) := n5i(n7) and H(n) := n53(n7).

G(2)G(63) + H(2)H(63) _ MrTigT42
G(126)G(1) — H(126)H(1)  neTaslar

2
dua

G2(1)H(2) — H*(1)G(2) = 2H(1) H2(2) 22

s

2
Mg

GH1)H(2) + HH1)G(2) = 2G(1)G*(2)- 3.

75

o

3
dum

G3(1)H(3) ~ GE)H(1) =32

N = 8  Here G(n) := nz;(n7) and H(n) := n53(n7).

G(MH(1) - G)H(T) = H“H
G(3)H(1) + G(1)H(3) = dﬁm__w

16

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)



GEYH(1) — G (3) = i (1.30)

- T g% 24
. ne
GH) + H (1) = -5 (L-31)
UNFUR
7%
G2(1) — H2(1) = .,..]AIA (1.32)
T2
2 2 4972
mﬁv n m@v =6+ 2% (1.33)
78,1 N8,3 T1y"g

12:  Here G(n) := 5z, (n7) and H(n} := nis(n7).

M
G*(1) — H2(1) = —&2 (1.34)
Y
4
GH1) + H2(1) = ~2120t (1.35)
dydmduw
542
G(3)H(1) + G)H(3) = —550 - (1.36)
demﬁumdum
GBYH() — G)H(3) = 228 (1.37)
M273s



N = 13: Here QT& = dﬂwﬂdﬂ%udﬂmﬁ?i and H(n) := dwu_hdﬂmu.m_dﬂ%_mm:ﬂv.

G(3)H(1) ~ G(1)H(3) = 1 (1.38)

1.6 Proving the Idntities

As we discussed in the beginning of the chapter, we will confine our attention
to one identity, namely (1.38). Using corollary 1.1, we immediately find that
G(3)H(1) and G(1)H(3) are functions on ['p(39), and their orders at the three
cusps s, & and 1 of I'p are identical. Moreover, we only have to check the first
few coefficients to realize that the left hand side is holomorphic on a compact
Riemann surface, hence constant by Liouville’s theorem. The constant s easily
checked to be 1.

All of the other identities are proved in a similar fashion: dividing both sides
by the right hand n-product, and ..mu&.sm the Rijemann surface on which all of the
terms live. We then check the wa.m.vm using theorem 1.3, and the poles will all

cancel, leaving us with a holomorphic function on & compact Riemann surface,

which must therefore be constant.

1.7 Discovering New Identities

In this section, we expand on an idea of Rangachari [Ran88] to discover that
each coset of T;(N) in I',(N) corresponds to a particular type of identity, and

predicts all such possible identities. The theory developed predicts that for genus
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0 Riemann surfaces various combinations of generalized Dedekind 7-products are
non-zero. We then check to see if those combinations are n-products. We find that
in many cases they are not, a curious fact in itself.

N = 5: By the formula for the orders at the cusps (theorem 1.3) we find

that 15 ;/75 2 has a simple pole at one cusp and no other poles at any of the other
cusps of I(5). That is, 75;/ns» is a Hauptmodul for X(5), a Riemann surface of
genus 0. We furthermore find that A = AW wu has order 2 and B = Almw wmv has
order § in H_oﬁmu\ﬂmvv while their commutator ABA—1B-1 ¢ I'(53). This means
ﬁoﬂwu\zmv is a non-abelian group of order 10, so must be Dg, the Dihedral group.
Let G(n7) := 715,(n7) and H(n7) := 55 ,(n7). Applying the transformation rule,
we get

(1.39)

Qf i
)

-G
' M«Wum.mﬂv = -

G
H

w3
vl

(A7) = e MS. (1.40)

The second equation doesn’t give rise to identities, but the first one does. Any

identity of the form
G(nT)G(m7) + H(n7)H(m7) = n — product (1.41)

must satisfy
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where equation {1.39) was used in the jast step. Since £ is a Hauptmodul for ['(5),

it takes each value in M exactly once. Thus the iast inequality holds

& nr o Bmr under ['(5)

& nT m7 under the coset BT(5)

A
S nr # Ammv:ﬁq with mwmvmmzmv
& emnr? 4 (dn—am)r —b #

0 with (24) € BT(5)

0.

IV

& (dn+am)? — 4mn

This condition on the discriminant of the quadratic in 7 gives all of the possible
identities of the form (1.41), and Ramanujan actually found them all [Bir75). We
have, however, discovered 4 new identities involving 55 ; and 75 5, the first of which
Ramanujan must have overlooked, since he bad a few in 2n identical form, and the
next 3 of which we cannot yet motivate. The first is found by forcing the zeroes of
the numerator to equal the zeroes of the denominator, thereby getting a non-zero

guotient on H.

N = & Again using theorem 1.3, we find that ng;/ngs has a simple pole
at one cusp and no other poles at any of the other cusps of I'}(8} N I'9(8), which
we will denote by T,(8,2). That is, ns1/7s5 is a Hauptmodul for X;(8,2), a
" Riemann surface of genus 0. We furthermore find that [To(8) : ¢ (8,2)} = 4, and

ﬂcmmv\ﬂ;muwv is the Klein group of order 4. It has coset representatives J,A =



mw Wuvm = Aw ¥ v, and C = AB. Let G(n7) i= ng,(n7) and H(n7) := nga(nT)-

511

By the transformation rule, we get

mﬁmi = M.Al (1.42)
G H
mﬂ.mq.v = !lQ_ITlu mwawv
G G
lel = le,; (1.44)

As in the N = 5 case, any identity of the form
G(nT)G(m7t) — H(nT)H(m7) = n — product (1.45)
must satisfy

G(n7)G(mr) — Hnt)H{m7} # 0

G H
At m?i # W_u?:l
+ mmmﬂaqy
where equation (1.42} is used in the Jast step. Since S is a Hauptmodul for ' (8,2),

the last inequality holds

& nt 7 Am7 under I',(8,2)

& nr o m7 under the coset AT (8,2).
Sirnilarly, equation (1.43) corresponds to identities of the form

G(n7)G(m7) + H(n7)H (1) = 7 — product, (1.46)



and equation (1.44} corresponds to identities of the form
G(nt)H(m7}+ H(n7)G(m7) = 5 — product. (1.47}

Because the only powers of = on the right hand side of (1.28) are muliiples of 4,
this identity has the following combinatorial interpretation: If n # 0 (mod 4), thep
the number of partitions of n into parts which are (7 times something = 41} or
something = +3 (mod 8) is equinumerous with the number of partitions of n —3

into parts which are (7 times something = £3) or something = 1 (mod 8).

N=12: The genus of X;(12) is 0, and a Hauptmodul is given by 7,2, /125-
Since [[y(12) : T4 (12)] = 14(12) = 2, there are only two cosets, each again giving
rise to all possible identities of a certain form. Using these two cosets, we find
the identities given in the previous section. Here we again find an identity (1.37)
with a combinatorial interpretation, because there are only even powers of z on
the right hand side. The result reads as follows: If n is odd, then the number of
partitions of n into parts which are (3 times something = 1) or something = *5
(mod 12) is equinumerous with the number of partitions of n — 2 into parts which

are (3 times something = &5) or something = £1 (mod 12).

N=13: Here the genus of X;(13) is not 0, but we can go up to the subgroup

wm:mfuﬁmv mwo:i mwv n le HH“ c.@

which does give a Riemann surface of genus 0. Let G(n) := M317s aiaa(RT)

and H(n) = 973am5sMae(n7). Notice that the indices in G(n) are the quadratic

A
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residues of 13 and the indices in H{n) are the quadratic nonresidues of 13. It turns
out that G(n}/H(n) is a Hauptmodul for Tx{13). Because {I';(13) : T(13)] = 2,
there are two coseis, giving rise to two possible collections of identities. The only
identity we find using these two cosets is (1.38), which is particularly simple and
Las the following curious combinatorial interpretation: The number of partitions
of n into quadratic residues of 13 and 3 times quadratic non-residues of 13 is
equinumerous with the number of parlitions of n — 2 into quadratic non-residues

of 13 and 3 times quadratic residues of 13.



