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Purpose of Talk

| ntroduce problem and some key math &
algorithmic ideas --- minimal details

Overview of our Multilevea framework

Connection to Optimization, Multigrid,
otal Variation

Will give general references at the end.




VLSICAD Design Flow
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Hyper graph H = (V,E) model

A NET (hyperedge) isa subset of interconnected CELL S (vertices).

Cell 1

Cell 4

Cell 3

Cell 5

Cell 2

> max(| x(v) = x(w) | +] y(v) = y(w) )

Placement problem: arrangethe cellsto minimize total
wirelength (= sum of the half perimeter wirelength in each nets).




Good Placement vs. Bad Placement
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The Circuit Placement Problem

Given:
e N circuits, a.k.a“blocks,” “modules,” or “cells’

e A rectangle (“thechip”) in which the circuits must be
placed without overlapping

o Connectivity specs (a hypergraph “netlist”)
 Constraints, e.g., timing, heat dissipation, routability

Problem: Find an arrangement of the circuits on the chip
that minimizestotal wirelength subject to all
constraints above.

Difficulty:
* Non-convex and non-differentiable objective function

* Modeling all O(N?) non-overlap constraintswhen 10*< N < 107
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Smooth Approximation of the
Objective Function (Wirelength)

Approx. D, max(| x(v) =X(w) | +] y(v) = y(W) )

by 2 DI X(V) = x(W) [ +] y(v) = y(w) []

elEv,WM e

e Squared Euclidean distance (k=2) (Quadratic Wirelength)

— Advantage: Involve solving a spar se positive definite linear
system.

— But too much penalty on long nets.

 Manhattan distance (k=1) (Linear Wirelength)

— Advantage: Good approximation
— But need to solve a sequence of weighted quadratic programmipg.



Smoothing the Placement Domain

Two stepsin placement:
e Global Placement

— Relax the placement
region. Allow
overlapping.

e Detailed Placement

— Put thecéllsin
standard rows by
preserving the global
placement as much as
possible.




Nonlinear Programming For mulation

min f(x)

subjectto c(x)= O (NP)

where x[IR".
f: RPSR objective function (n=2N or 3N)
c. R RmM constraint functions (m=N(N-1)/2 + N)
F={xUR"| c(x) =0} feasible region
X* local solution to NP (KKT conditions)
Assumption: f and care “smooth”
Difficulty:

— Active set A={i|c(x*)=0} is unknown
— A lot of local minimizers
— N is large



Why Use Multilevel for Placement
Problem?

» Better Scalability:

need to solve placement problems with
millions of cells

e Better Global Optimization:

need to find a good local minimain the
placement problem
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Motivation and Related Work
Multilevel Methodsin Scientific Computation

e Originally developed to solve boundary-value
partial differential equation (PDE) problemson
continuous field

o Discretized elliptic PDE isa structured, positive-
definite system of linear equations

— Multi-grid method
— Algebraic Multi-grid (AMG)
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Multilevel Methodsin VLSICAD

« Successfully applied to solve hyper graph
partitioning problem:
— Hmetis[ G. Karypis 1998]
— MLpart [C. Alpert, J. Huang, A. Kahng 1998]

e Our goal:

— Want to apply the M ultilevel ideasto solve
placement problem directly, not as an equation
solver.
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Our Multilevel Placement Framework

Initial Fine-Grain Problem

Aggregate\

Intermediate Level

Aggregate\ etc.

Aggregate

Final Fine-Grain Problem.
Thorough Relaxation and
Detailed Placement

/" Interpolate

Intermediate Level
Relaxation (Optimization)

etc. / Interpolate
/" Interpolate

Intermediate Level

Aggregate \,

Intermediate Level
Relaxation (Optimization)

/" Interpolate

Find a Good Coarse-Grain
Problem Solution
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Main Componentsin Multilevel
Framewor k

1. Createcoarser problems
|aggregation/coarsening/clustering]

2. Optimize coarser problems
[relaxation/smoothing]

3. Transform coarser problem solution to
finer level

[I nterpolation/declustering |

Challenge: Blend PDE-based & VLSI-specific



Overview
of Our Multilevel Placement

Coarsening €
— Modified First Choiceclustering

Relaxation (Intralevel Optimization)
nterpolation
terated Multilevel Flow
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Coar sening by Recur sive Aggregation
First Choice Aggregation [Karypis, 1999]

Transform the
hypergraph to
cligue model
graph using the
weight 1/(|el-1)

>

Match each vertex with a neighboring vertex with
which it sharesthe most total hyperedge weight
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MmPL Coarse-Level Formulation
[Chan, Cong, Kong, Shinnerl; |CCAD 2000]

* Nonlinear-Programming Formulation

— Direct formulation for the coar se placement
problem

— Cellsaremodeled ascircular disksfor smoothness
— Quadratic wirelength objective on a clique-model
— Pairwise nonoverlap constraints

 Reasonable performancefor coarse-level sizes
N <= 500 only.
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Overview
of Our Multilevel Placement

Coar sening

Relaxation (Intralevel Optimization) €
— Quadratic relaxation on subsets (QRS) +

bounded domain ripple-movetoreieve area
congestion

| nter polation
|terated Multilevel Flow
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Quadratic Relaxation on Noncontiguous Subsets
(QRS)
o Select asubset M of cellsto move.

 |dentify other cellsand pads, F,
connected to M by netsin

E, ={elUE|en M Z ¢}.

I Movable cdl

M is obtained as segments of length 3 along
a DFSvertex traversal of the netlist, where 0 fixed cell
starting the DFS at a vertex connected with

lar gest wirelength.
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Solving the Subproblem

* Problem formulation (horizontal case):

(V) ~%,)’
min 2, 2 ) e

where X, :in(v), £ issmallnumber.

vile
e |teratively solvethe weighted quadratic minimization
problem, using the current solution to determine the
weight (Gordian-L).
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Ripple-move Legalization [Hur and Lillis, 2000]

Because QRS ignores overlap constraints, post-QRS cell

swaps are used to remove the ar ea congestion.
Bound the searching region for scalability

Definea DAG on neighboring bins. Edge cost reflectsthe
best wirelength gain over all cell swaps between two bins.

Calculate a max-gain monotone path on the bin-grid graph

'.,'l‘ ]
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Overview
of Our Multilevel Placement

Coarsening

Relaxation (Intralevel Optimization)
|nter polation €

— AM G-based weighted disaggregation
|terated Multilevel Flow
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AM G-based Linear Interpolation
[A. Brandt 1986]

Next finer cluster
level cdlls
B . B
O [ ]
] AMG
N lation ]
terpo
g @ . .
O
10N [1 C-point "
Within each cluster,
select the one with —
_ V= 2 V. + 2 2V
maximum degree as| " C—pointsv; a” b F-pointsv a” J

C-point; othersare

considered as F-points




AMG-based (o a2 - a1
. a1 a22 ... d42n
Interpolation |: - =

\an]_ an> ... ann}

Use the cligue-model graph to define connectivity
weights (connectivity matrix)

Within each cluster, select the one with maximum
degree asa C-point
Each C-point is placed at the cluster’s position.

Each F-point is placed at the weighted average of the
C-points and F-pointsto which it is strongly connected

The F-points positions can be iteratively improved.
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Overview
of Our Multilevel Placement

Coarsening

Relaxation (Intralevel Optimization)
nter polation

terated Multilevel Flow €

25



@

lterated Multilevel Flow

M ake use of placement
solution from 1% V-cycle

<.

First Choice (FC) Geometric based
clustering <> > FC clustering

<X < > <>
3 <> @, <>

@
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Adjustable Vertex Affinity for Re-aggregation

o First V-cycle affinity:

_ w(e)
i {@Euz,me} (|e|-Darede)

* Next V-cycle affinity (distanceisincorporated):

= Z W(e)
" (e (Je] -Darede)d(v V)
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Placement: pre-1997 State of the Art

 Simulated Annealing-based methods (SA) can
handle complex design constraints, but itsruntime
does not scalewell (Timberwolf/iTools).

e Quadratic Programming-based methods (QP) are
very efficient, but they cannot handle complex
constraintswell (Gordian-L)

— Force-directed methods (Kraftwerk)

e Recursive Bipartitioning was not competitive with
QP and SA.
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Multilevel Hyper graph Partitioning

1997. hMetis (Karypiset.al.), MLpart (Caldwell et al.)

Thefirst widely successful implementation of multilevel
hyper graph partitioning.

10x speedup or more; improved scalability; improved
cutsize

Very influential on current algorithms for placement

— Dragon (Sarrafzadeh et al., 2000): top-down 4-way partitioning by
hM etiswith wirelength improvement at each stage by smulated
annealing

— Capo (Kahng et al., 2000) Recursive multilevel hypergraph
bipartitioning with car efully chosen cutlines and branch-and-bound
on base cases (<= 30 cells).
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MmPL 3.0 vs. mPL 1.0, Capo08.5,
Dragon and Gordian-L

6.00

5.00

4.00

3.00

scaled runtime

2.00

1.00

0.00
0.95 1.00 1.05 1.10 1.15

scaled wirelength




Experimental Resultson PEKO and PEKU
[C. Chang, J. Cong, M. Romesis, M. Xie, 2003]
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Some Open | ssues

 Morecomplex design objectives and constraints

— clock frequency, routability, heat dissipation,
widely varying cell sizes, ...

« AMG theory/algorithmsfor optimization on
hypergraphs
— control #hyperedges at coarser levels
— continuous vs. discreterelaxations

e Multi-level FAS optimization framework
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Relevant Annual Conferences
all are associated with | EEE/ACM

DAC: Design Automation Conference

| CCAD: International Conference on
Computer-Aided Design

| SPD: International Symposium on
Physical Design

ASPDAC: Asia South-Pacific Design
Automation Conference

33



Institute For Pure and Applied Mathematics
University of California, Los Angeles presents a workshop in

Multilevel Optimization in VLSICAD
Computer-Aided Design of Very-Large-Scale Integrated Circuits
December 3—5, 2001

=  Achi Brandt Weizmann Institute of Science, Appl. Math. & CS

= Jason Cong UCLA, CS

= Ding-zhu Du University of Minnesota, CS&E

= Stephan Hartmann TU Berlin, Math

= Bruce Hendrickson Sandia National Labs, Parallel CS

= Michael Lewis College of William & Mary, Math

= George Karypis University of Minnesota, CS&E

= John Lillis University of lllinois Chicago, EECS

= Stephen Nash George Mason University, Systems Eng. & Op. Res.
= Majid Sarrafzadeh UCLA, CS

= Lieven Vandenberghe UCLA, EE

= Chandu Visweswariah IBM Research, Design Automation

=  Chris Walshaw University of Greenwich, Computing and Math. Sci.
= Jacob White MIT, EECS

=  Gabriel Wittum University of Heidelberg, IWR (Sci. Comp.)

=  Martin Wong University of Texas at Austin, CS

Members of the organizing committee include Achi Brandt (Weizmann Institute of
Science, Israel), Jason Cong (UCLA), and Joseph R. Shinnerl (UCLA)

The program is open to the entire mathematical, computer science, and engineering scientific communities.

Please visit our website for more information, including an online registration form:

http://www.ipam.ucla. edu/programs,/mov2001

You can email questions to mov2001@ipam.ucla.edu
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