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Purpose of Talk

• Introduce problem and some key math & 
algorithmic ideas --- minimal details

• Overview of our Multilevel framework
• Connection to Optimization, Multigrid, 

Total Variation
• Will give general references at the end.
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VLSICAD Design Flow

Logical Specification Geometrical Specification

module r1 1 3 30 40 

module r2 40 40 10 

20 module r3 0 40 

10 10 terminal a r1 

0 0 terminal b r1 30 

20 terminal c r3 0 0 

terminal d r2 10 10 

net N1 r1 a r3 c 

net N2 r1 b r2 d 
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Hypergraph H = (V,E) model
A NET (hyperedge) is a subset of interconnected CELLS (vertices).

Cell 2

Cell 3

Cell 4

Cell 5

Cell 1

Placement problem: arrange the cells to minimize total 
wirelength (= sum of the half perimeter wirelength in each nets).
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Good Placement vs. Bad Placement
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The Circuit Placement Problem
Given:
• N circuits, a.k.a “blocks,” “modules,” or “cells”
• A rectangle (“the chip”) in which the circuits must be 

placed without overlapping
• Connectivity specs (a hypergraph “netlist”)
• Constraints, e.g., timing, heat dissipation, routability

Problem: Find an arrangement of the circuits on the chip 
that minimizes total  wirelength subject to all 
constraints above.

Difficulty: 
• Non-convex and non-differentiable objective function
• Modeling all O(N2) non-overlap constraints when 104 ≤ N ≤ 107



7

Smooth Approximation of the 
Objective Function (Wirelength)

• Squared Euclidean distance (k=2) (Quadratic Wirelength)
– Advantage: Involve solving a sparse positive definite linear 

system.
– But too much penalty on long nets.

• Manhattan distance (k=1) (Linear Wirelength)
– Advantage: Good approximation
– But need to solve a sequence of weighted quadratic programming.
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Smoothing the Placement Domain

Two steps in placement:
• Global Placement

– Relax the placement 
region. Allow 
overlapping.

• Detailed Placement
– Put the cells in 

standard rows by 
preserving the global 
placement as much as 
possible.
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Nonlinear Programming Formulation

min   f(x)
subject to  c(x) ≥ 0               (NP)
where x∈ Rn.

• f:  Rn→R objective function (n≈2N or 3N)
• c: Rn→Rm constraint functions (m ≈N(N-1)/2 + N)
• F≡{x∈ Rn| c(x) ≥0} feasible region
• x* local solution to NP (KKT conditions)
• Assumption:  f and c are “smooth”
• Difficulty:      

– Active set A≡{i|ci(x*)=0} is unknown
– A lot of local minimizers
– N is large
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Why Use Multilevel for Placement 
Problem?

• Better Scalability:
need to solve placement problems with 
millions of cells

• Better Global Optimization:
need to find a good local minima in the 
placement problem



11

Motivation and Related Work
Multilevel Methods in Scientific Computation

• Originally developed to solve boundary-value 
partial differential equation (PDE) problems on 
continuous field

• Discretized elliptic PDE is a structured, positive-
definite system of linear equations
– Multi-grid method
– Algebraic Multi-grid (AMG)
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Multilevel Methods in VLSICAD

• Successfully applied to solve hypergraph
partitioning problem:
– Hmetis [ G. Karypis 1998]
– MLpart [C. Alpert, J. Huang, A. Kahng 1998]

• Our goal:
– Want to apply the Multilevel ideas to solve 

placement problem directly, not as an equation 
solver.
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Initial Fine-Grain Problem

Our Multilevel  Placement Framework

Intermediate Level

Intermediate Level

Find a Good Coarse-Grain 
Problem Solution

Aggregate

Aggregate

Intermediate Level
Relaxation (Optimization)

Intermediate Level
Relaxation (Optimization)

Final Fine-Grain Problem.
Thorough Relaxation and

Detailed Placement 

Aggregate Interpolate

InterpolateAggregate
etc. etc. Interpolate

Interpolate
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Main Components in Multilevel 
Framework

1. Create coarser problems 
[aggregation/coarsening/clustering]

2. Optimize coarser problems   
[relaxation/smoothing]

3. Transform coarser problem solution to 
finer level 
[Interpolation/declustering ]

Challenge: Blend PDE-based & VLSI-specific 
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Overview 
of Our Multilevel Placement

• Coarsening �
– Modified First Choice clustering

• Relaxation (Intralevel Optimization)
• Interpolation
• Iterated Multilevel Flow
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Coarsening by Recursive Aggregation
First Choice Aggregation [Karypis, 1999]

1

3/2

1

1/2
1

1/2

1/2

Transform the
hypergraph to
clique model 
graph using the 
weight 1/(|e|-1)

Match each vertex with a neighboring vertex with 
which it shares the most total hyperedge weight
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mPL Coarse-Level Formulation

• Nonlinear-Programming Formulation
– Direct formulation for the coarse placement 

problem

– Cells are modeled as circular disks for smoothness

– Quadratic wirelength objective on a clique-model
– Pairwise nonoverlap constraints

• Reasonable performance for coarse-level sizes 
N <= 500 only.

[Chan, Cong, Kong, Shinnerl; ICCAD 2000]
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Overview 
of Our Multilevel Placement

• Coarsening

• Relaxation (Intralevel Optimization) �
– Quadratic relaxation on subsets (QRS) +

bounded domain ripple-move to relieve area 
congestion

• Interpolation
• Iterated Multilevel Flow
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Quadratic Relaxation on Noncontiguous Subsets 
(QRS)

• Select a subset M of cells to move.

Movable cell

fixed cell
M is obtained as segments of length 3 along 
a DFS vertex traversal of the netlist, where 
starting the DFS at a vertex connected with 

largest wirelength.

}.|{ φ≠∩∈= MeEeE M

• Identify other cells and pads, F, 
connected to M by nets in
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Solving the Subproblem

• Problem formulation (horizontal case):

• Iteratively solve the weighted quadratic minimization 
problem, using the current solution to determine the 
weight (Gordian-L).
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Ripple-move Legalization [Hur and Lillis, 2000]

Define a DAG on neighboring bins.  Edge cost reflects the 
best wirelength gain over all cell swaps between two bins.
Calculate a max-gain monotone path on the bin-grid graph

Because QRS ignores overlap constraints, post-QRS cell 
swaps are used to remove the area congestion.

Bound the searching region for scalability
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Overview 
of Our Multilevel Placement

• Coarsening
• Relaxation (Intralevel Optimization) 
• Interpolation �

– AMG-based weighted disaggregation

• Iterated Multilevel Flow
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AMG-based Linear Interpolation
[A. Brandt 1986]

interpolation

AMG

cluster
Next finer 
level cells

Within each cluster, 
select the one with 
maximum degree as  
C-point; others are 

considered as F-points

C-point
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AMG-based 
Interpolation 

• Use the clique-model graph to define connectivity 
weights (connectivity matrix)

• Within each cluster, select the one with maximum 
degree as a C-point

• Each C-point is placed at the cluster’s position.

• Each F-point is placed at the weighted average of the 
C-points and F-points to which it is strongly connected

• The F-points’ positions can be iteratively improved.
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Overview 
of Our Multilevel Placement

• Coarsening
• Relaxation (Intralevel Optimization) 
• Interpolation

• Iterated Multilevel Flow �
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Iterated Multilevel Flow

Make use of placement 
solution from 1st V-cycle

First Choice (FC)
clustering

Geometric based
FC clustering
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Adjustable Vertex Affinity for Re-aggregation

• First V-cycle affinity:
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• Next V-cycle affinity (distance is incorporated):
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Placement: pre-1997 State of the Art

• Simulated Annealing-based methods (SA) can 
handle complex design constraints, but its runtime 
does not scale well (Timberwolf/iTools).

• Quadratic Programming-based methods (QP) are 
very efficient, but they cannot handle complex 
constraints well (Gordian-L)
– Force-directed methods (Kraftwerk)

• Recursive Bipartitioning was not competitive with 
QP and SA.
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Multilevel Hypergraph Partitioning

• 1997: hMetis (Karypis et.al.), MLpart (Caldwell et al.)
• The first widely successful  implementation of multilevel 

hypergraph partitioning.
• 10x speedup or more; improved scalability; improved 

cutsize
• Very influential on current algorithms for placement

– Dragon (Sarrafzadeh et al., 2000): top-down 4-way partitioning by 
hMetis with wirelength improvement at each stage by simulated 
annealing  

– Capo (Kahng et al., 2000) Recursive multilevel hypergraph
bipartitioning with carefully chosen cutlines and branch-and-bound 
on base cases (<= 30 cells).
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mPL3.0 vs. mPL1.0, Capo8.5, 
Dragon and Gordian-L
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Experimental Results on PEKO and PEKU
[C. Chang, J. Cong, M. Romesis, M. Xie, 2003]
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Some Open Issues

• More complex design objectives and constraints

– clock frequency, routability, heat dissipation, 
widely varying cell sizes, …

• AMG theory/algorithms for optimization on 
hypergraphs
– control #hyperedges at coarser levels
– continuous vs. discrete relaxations

• Multi-level FAS optimization framework
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Relevant Annual Conferences
all are associated with IEEE/ACM

• DAC: Design Automation Conference
• ICCAD: International Conference on 

Computer-Aided Design
• ISPD: International Symposium on 

Physical Design
• ASPDAC: Asia South-Pacific Design 

Automation Conference
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Institute For Pure and Applied Mathematics  
University of California, Los Angeles presents a workshop in 

 

Multilevel Optimization in VLSICAD 
Computer-Aided Design of Very-Large-Scale Integrated Circuits 

 December 3—5, 2001 
 

� Achi Brandt    Weizmann Institute of Science, Appl. Math. & CS 
� Jason Cong    UCLA, CS 
� Ding-zhu Du  University of Minnesota, CS&E 
� Stephan Hartmann  TU Berlin, Math 
� Bruce Hendrickson    Sandia National Labs, Parallel CS 
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� Chris Walshaw   University of Greenwich, Computing and Math. Sci. 
� Jacob White   MIT, EECS 
� Gabriel Wittum  University of Heidelberg, IWR (Sci. Comp.) 
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The program is open to the entire mathematical, computer science, and engineering scientific communities. 
 

Please visit our website for more information, including an online registration form:   

http://www.ipam.ucla.edu/programs/mov2001 

You can email questions to mov2001@ipam.ucla.edu 
 

Members of the organizing committee include Achi Brandt (Weizmann Institute of 

Science, Israel), Jason Cong (UCLA), and Joseph R. Shinnerl (UCLA) 
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Book:    http://www.wkap.nl/prod/b/1-4020-1081-8


