Department of Statistics, University of Pittsburgh
Pittsburgh, Pennsylvania, 15260 ; Schwartzman, Armin(1-UCSD-BS)
Division of Biostatistics, University of California, San Diego
La Jolla, California, 92093 ;
Geometric foundations for scaling-rotation statistics on symmetric positive definite matrices: minimal smooth scaling-rotation curves in low dimensions. (English summary)
Electron. J. Stat. 11 (2017), no. 1, 1092-1159.
53C15 (15B48 51F25 53C22)
3379023
Jung, Sungkyu(1-PITT-S); Schwartzman, Armin(1-NCS-S); Groisser, David(1-FL)
Scaling-rotation distance and interpolation of symmetric positive-definite matrices. (English summary)
SIAM J. Matrix Anal. Appl. 36 (2015), no. 3, 1180-1201.
15B48 (15A16 22E60 53C20 53C22 57S15)
3341849
Groisser, David(1-FL-NDM); Peters, Jörg(1-FL-NDM)
Matched $G^k$-constructions always yield $C^k$-continuous isogeometric elements. (English summary)
Comput. Aided Geom. Design 34 (2015), 67-72.
65D17
3203429
Bhattacharya, Rabi N.(1-AZ-NDM); Buibaş, Marius; Dryden, Ian L.(1-SC-S); Ellingson, Leif A.(1-TXT-NDM); Groisser, David(1-FL-NDM); Hendriks, Harrie(NL-RUNJ-NDM); Huckemann, Stephan(D-GTN-ST); Le, Huiling(4-NOTT); Liu, Xiuwen(1-FLS-NDM); Marron, James S.(1-NC-NDM); Osborne, Daniel E.(1-FL-NDM); Pătrângenaru, Vic(1-FL-NDM); Schwartzman, Armin(1-HRV-NDM); Thompson, Hilary W.(1-LAS-ND2); Wood, Andrew T. A.(4-NOTT)
Extrinsic data analysis on sample spaces with a manifold stratification. (English summary) Advances in mathematics, 241-251, Ed. Acad. Române, Bucharest, 2013.
62H11 (60F05 62G09 62G20 62H35)
3061421
Osborne, Daniel; Patrangenaru, Vic(1-FLS-S); Ellingson, Leif(1-TXT-MS); Groisser, David(1-FL); Schwartzman, Armin(1-HRVH-BS)
Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysis. (English summary)
J. Multivariate Anal. 119 (2013), 163–175.
62H11 (60B05 62G09 62G10 62H10 62P15)
2515460
Groisser, David(1-FL); Tagare, Hemant D.(1-YALE-RD)
On the topology and geometry of spaces of affine shapes. (English summary)
J. Math. Imaging Vision 34 (2009), no. 2, 222--233.
68U10
2505406
Tagare, Hemant D.(1-YALE-RD); Groisser, David(1-FL); Skrinjar, Oskar(1-GAIT)
Symmetric non-rigid registration: a geometric theory and some numerical techniques. (English summary)
J. Math. Imaging Vision 34 (2009), no. 1, 61--88.
94A08 (65K10 68U10)
2485415
Groisser, David(1-FL)
Certain optimal correspondences between plane curves. II. Existence, local uniqueness, regularity, and other properties. (English summary)
Trans. Amer. Math. Soc. 361 (2009), no. 6, 3001--3030.
58Dxx (49K05 53Axx)
2485414
Groisser, David(1-FL)
Certain optimal correspondences between plane curves. I. Manifolds of shapes and bimorphisms. (English summary)
Trans. Amer. Math. Soc. 361 (2009), no. 6, 2959--3000.
58Dxx (49K15 53Axx)
2235478
Groisser, David(1-FL)
Some differential-geometric remarks on a method for minimizing
constrained functionals of matrix-valued functions.
(English. English summary)
J. Math. Imaging Vision 24 (2006), no. 3, 349--358.
94Axx (58Exx 92C55)
2191597
Zheng, Xiqiang(1-FL); Chen, Yunmei(1-FL); Groisser, David(1-FL); Wilson, David(1-FL)
Nonrigid correspondence and classification of curves based on more desirable properties.
(English. English summary)
Multiscale optimization methods and applications,
393--407,
Nonconvex Optim. Appl., 82,
Springer, New York, 2006.
65D17
2138772
Groisser, David(1-FL)
On the convergence of some Procrustean averaging algorithms.
(English. English summary)
Stochastics 77 (2005), no. 1, 31--60.
60D05
2064359
Groisser, David(1-FL)
Newton's method, zeroes of vector fields, and the Riemannian center of mass.
(English. English summary)
Adv. in Appl. Math. 33 (2004), no. 1, 95--135.
53C20 (60E05 62E10 62H05 65J15)
1884465
Tagare, Hemant D.(1-YALE-RD); O'Shea, Donal(1-MTHO); Groisser, David(1-FL)
Non-rigid shape comparison of plane curves in images.
(English. English summary)
J. Math. Imaging Vision 16 (2002), no. 1, 57--68.
68U10 (68T45)
1793015
Groisser, David(1-FL); Sadun, Lorenzo(1-TX)
Simple type and the boundary of moduli space.
(English. English summary)
J. Geom. Phys. 36 (2000), no. 3-4, 324--384.
57R57 (58D29)
1690417
Groisser, David(1-FL)
Totally geodesic boundaries of Yang-Mills moduli spaces.
(English. English summary)
Houston J. Math. 24 (1998), no. 2, 221--276.
58D27 (53C07 53C21)
1608663
Groisser, David(1-FL); Murray, Michael K.(5-ADLD)
Instantons and the information metric.
(English. English summary)
Ann. Global Anal. Geom. 15 (1997), no. 6, 519--537.
58D27 (53C07 57R57 58E15)
1487724
Groisser, David(1-FL); Parker, Thomas H.(1-MIS)
Sharp decay estimates for Yang-Mills fields.
Comm. Anal. Geom. 5 (1997), no. 3, 439--474.
53C07 (58D27 58E15)
1458668
Groisser, David(1-FL)
The $L\sp 2$ metric in gauge theory: an introduction and some applications.
(English. English summary)
Symplectic singularities and geometry of gauge fields (Warsaw, 1995),
317--329,
Banach Center Publ., 39,
Polish Acad. Sci., Warsaw, 1997.
58D27 (53C07)
1243522
Groisser, David(1-FL)
Curvature of Yang-Mills moduli spaces near the boundary. I.
Comm. Anal. Geom. 1 (1993), no. 2, 139--215.
58D27 (53C07 58E15 81T13)
1086754
Groisser, David(1-FL); Parker, Thomas H.(1-MIS)
Semiclassical Yang-Mills theory. I. Instantons.
Comm. Math. Phys. 135 (1990), no. 1, 101--140.
58D20 (58G26 81T13 81T16)
1031907
Groisser, D.(1-SUNYS)
The geometry of the moduli space of $ C{\rm P}\sp 2$ instantons.
Invent. Math. 99 (1990), no. 2, 393--409.
58D15 (53C25 58B20 58E11 81E13)
1027070
Freed, Daniel S.(1-TX); Groisser, David(1-FL)
The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group.
Michigan Math. J. 36 (1989), no. 3, 323--344.
58D17 (58B20)
992329
Groisser, David(1-SUNYS); Parker, Thomas H.(1-BRND)
The geometry of the Yang-Mills moduli space for definite manifolds.
J. Differential Geom. 29 (1989), no. 3, 499--544.
58D15 (53C05 53C80 57N13 57N15 57R22 58B20 58E15)
910586
Groisser, David(1-SUNYS); Parker, Thomas H.(1-BRND)
The Riemannian geometry of the Yang-Mills moduli space.
Comm. Math. Phys. 112 (1987), no. 4, 663--689.
58B20 (53C05 58D15 58E11 81E13)
745691
Groisser, David(1-MSRI)
Integrality of the monopole number in ${\rm SU}(2)$ Yang-Mills-Higgs theory on $ R\sp{3}$.
Comm. Math. Phys. 93 (1984), no. 3, 367--378.
58E05 (81E13)
Last update made
Sun Jan 7 14:01:31 EST 2018