
CONGRUENCES MODULO 4 FOR WEIGHT 3/2 ETA-PRODUCTS

RONG CHEN AND F. G. GARVAN

Abstract. We find and prove a class of congruences modulo 4 for eta-products associ-
ated with certain ternary quadratic forms. This study was inspired by similar conjectured
congruences modulo 4 for certain mock theta functions.

1. Introduction

Let p(n) be the number of unrestricted partitions of n. Ramanujan discovered and later
proved that
(1.1)
p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), and p(11n+ 6) ≡ 0 (mod 11).

Congruences of this type are called Ramanujan-type congruences. Many authors have con-
sidered Ramanujan-type congruences for the coefficients of modular forms and more recently
the coefficients of mock theta functions. For a given prime ` there are standard techniques
for proving such congruences. A more difficult problem is proving Ramanujan-type congru-
ences for a given partition-type function for infinitely many arithmetic progressions. This
paper arose after a study of some conjectures mod 4 for the coefficients of certain mock theta
functions. Define sequences u(n), v(n) by

∞∑
n=0

u(n)qn =
∞∑
n=0

(−q; q)2nqn+1,(1.2)

∞∑
n=0

v(n)qn =
∞∑
n=0

(−q; q)2nqn

(q; q2)n+1

,(1.3)

where as usual

(a)n = (a; q)n =
n−1∏
k=0

(1− aqk).

We have the following conjectures.
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Conjecture 1.1 (Bryson, Ono, Pitman and Rhoades [5]). If p ≡ 7, 11, 13, 17 (mod 24) is a
prime and

(
k
p

)
= −1, then for all n we have

(1.4) u(p2n+ kp− δ(p)) ≡ 0 (mod 4),

where δ(p) = (p2 − 1)/24.

Conjecture 1.2 (Kim, Lim and Lovejoy [12]). Let p 6≡ −1 (mod 8) be prime and let k be a
positive integer satisfying p ‖ 8k + 7. If (8k + 7)/p is a quadratic residue modulo p, then

v(p2n+ k) ≡ 0 (mod 4).

In order to understand these conjectures we led to determine whether similar congru-
ences occur naturally in the theory of modular forms. We prove congruences mod 4 for the
coefficients of three certain eta-products associated with ternary quadratic forms. We define

a(n) = the number of representations of n as a sum of two pentagonal numbers and

three times a triangular number,

b(n) = the number of representations of n as a sum of a pentagonal number and

three times the sum of two triangular numbers,

c(n) = the number of representations of n as a sum of a pentagonal number and

two triangular numbers,

so that

f(q) :=
∞∑
n=0

a(n)qn =

(
∞∑

k=−∞

qk(3k+1)/2

)2 ∞∑
m=0

q3m(m+1)/2 =
J3
3J

2
2

J2
1

= q−11/24
η(3τ)3η(2τ)2

η(τ)2
,

(1.5)

∞∑
n=0

b(n)qn =
∞∑

k=−∞

qk(3k+1)/2

(
∞∑
m=0

q3m(m+1)/2

)2

=
J3
6J2
J1

= q−19/24
η(6τ)3η(2τ)

η(τ)
,

∞∑
n=0

c(n)qn =
∞∑

k=−∞

qk(3k+1)/2

(
∞∑
m=0

qm(m+1)/2

)2

=
J2
3J

5
2

J6J3
1

= q−7/24
η(3τ)2η(2τ)5

η(6τ)η(τ)3
.

Here we have used the usual notation for infinite products and the Dedekind eta-function

Jk =
∞∏
n=1

(1− qkn), η(τ) = q1/24
∞∏
n=1

(1− qn),

where q = exp(2πiτ) and =(τ) > 0. Also we note the well-known identities

∞∑
k=−∞

qk(3k+1)/2 =
J2
3J2
J6J1

,

∞∑
k=0

qk(k+1)/2 =
J2
2

J1
,
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which follow from Jacobi’s triple product identity [2, p. 35]
∞∑

n=−∞

znqn(n−1)/2 =
∞∏
n=1

(1− zqn−1)(1− z−1qn)(1− qn).

We will prove the following congruences which is the main result in this paper.

Theorem 1.3. Let p > 3 be prime, suppose 24δp ≡ 1 (mod p2), and k, n ∈ Z where
(
k
p

)
= 1.

Then

a(p2n+ (pk − 11)δp) ≡ 0 (mod 4), if p 6≡ 11 (mod 24),(i)

b(p2n+ (pk − 19)δp) ≡ 0 (mod 4), if p 6≡ 19 (mod 24),(ii)

c(p2n+ (pk − 7)δp) ≡ 0 (mod 4), if p 6≡ 7 (mod 24).(iii)

Examples. We illustrate (i) when p = 5, 7. We have

a(25n+ 6) ≡ 0 (mod 4), a(25n+ 16) ≡ 0 (mod 4),

and

a(49n+ 8) ≡ 0 (mod 4), a(49n+ 15) ≡ 0 (mod 4), a(49n+ 43) ≡ 0 (mod 4).

We relate a(n) to r3(n), the number of representations of n as a sum of three squares. We
have

(1.6)
∞∑
n=0

r3(n)qn =
∑

x,y,z∈Z

qx
2+y2+z2 .

Noting that
∞∑
m=0

q3m(m+1)/2 =
∞∑

m=−∞

q6m
2−3m,

we let

(1.7) F (q) :=
∞∑
n=0

A(n)qn := q11f(q24) =
∑

x,y,z∈Z

q(6x+1)2+(6y+1)2+9(4z+1)2 ,

so that

(1.8) a(n) = A(24n+ 11),

for n ≥ 0. Clearly A(n) = 0 if n 6≡ 11 (mod 24). We observe that

x2 + y2 + z2 ≡ 11 (mod 24)

if and only if one of x2, y2, z2 congruent to 9 and the others congruent to 1 modulo 24. Since
x2 ≡ 1 (mod 24) if and only if x ≡ ±1 (mod 6) and also x2 ≡ 9 (mod 24) if and only if
x ≡ ±3 (mod 6),

∞∑
n=0

r3(24n+ 11)q24n+11 =3
∑

u,v=±1

∑
x,y,z∈Z

q(6x+u)
2+(6y+v)2+9(2z+1)2
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=24
∑

x,y,z∈Z

q(6x+1)2+(6y+1)2+9(4z+1)2 ,

Therefore

(1.9) 24A(n) =

{
r3(n) if n ≡ 11 (mod 24),

0 otherwise.

In Sections 3 and 4 we prove case (i) of Theorem 1.3 in detail. Section 3 deals with A(n)
when n is square-free. In Section 4 we study A(n) when is not square free. We sketch the
proof of the remaining cases (ii), (iii) in Section 5.

2. Preliminary results for r3(n) and the class number

The number of representations of n as a sum of three squares, ternary quadratic forms
and the relation to the class number dates back to work of Gauss [8]. We need results of
Gauss for r3(n) when n ≡ 3 (mod 8).

Theorem 2.1 ([10, p.51]). If n is square-free, n > 3 and n ≡ 3 (mod 8), then we have

r3(n) = 24h(−n),

where h(−n) is the class number of Q(
√
−n).

This theorem implies

Theorem 2.2 ([10, p.52]). If n is square-free, n > 3 and n ≡ 3 (mod 8), then we have

r3(n) = 2t+2k,

where t is the number of distinct prime factors of n and k is the number of classes in each
genus of Q(

√
−n).

The following theorem is a consequence of Dirichlet’s class number formula [4, p. 346] and
Theorem 2.2.

Theorem 2.3 ([10, p.53]). If n is square-free, n > 3 and n ≡ 3 (mod 8), then we have

r3(n) = 8

(n−1)/2∑
r=1

(
r

n

)
.

Here and throughout this paper

(
·
·

)
denotes the Kronecker symbol.
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3. Congruences of A(n) for square-free numbers n

Throughout this section (unless otherwise stated) we assume that n ≡ 11 (mod 24) and
is square-free with prime factorization

(3.1) n =
s∏
i=1

pi.

Here s = s(n) is the number of distinct prime divisors of n. From Theorem 2.3 and (1.9) we
have

3A(n) =

(n−1)/2∑
r=1

(
r

n

)
.

If n is prime we have
(n−1)/2∑
r=1

( r
n

)
≡ 1 (mod 2).

This implies

Lemma 3.1. If n ≡ 11 (mod 24) is prime then

A(n) ≡ 1 (mod 2).

If s ≥ 3, then 25 | r(n) by Theorem 2.2. Hence we have

Lemma 3.2. If n ≡ 11 (mod 24) has a least s = 3 distinct prime divisors then

A(n) ≡ 0 (mod 4).

The interesting case is s = 2, i.e. n = p1p2 is a product of two distinct primes. Since n ≡ 3
(mod 4), one of p1 and p2 is congruent to 1 and the other is congruent to 3 modulo 4. By
Gauss’s Law of Quadratic Reciprocity we have(

p1
p2

)
=

(
p2
p1

)
.

For the case s = 2 we need some additional lemmas. We define

(3.2) D := D(p1, p2) := {1 ≤ r ≤ (p1p2 − 1)/2 : (r, p1p2) = 1} .
We have

(3.3) 3A(p1p2) =

(n−1)/2∑
r=1

(
r

p1

)(
r

p2

)
=
∑
r∈D

(
r

p1

)(
r

p2

)
.

The number of elements in D is

N := N(p1, p2) := |D| = 1

2
ϕ(n) =

1

2
(p1 − 1)(p2 − 1),

where ϕ(n) is the Euler function. Since one of p1 and p2 is congruent to 1 modulo 4, we have

4|N.(3.4)
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Lemma 3.3. Let p1, p2 be distinct primes with p1p2 ≡ 3 (mod 4). If
(
p1
p2

)
= 1 then∑

r∈D

(
r

p1

)
=
∑
r∈D

(
r

p2

)
= 0.

Proof. Let

E := E(p1, p2) := {r = u+ vp2 : 1 ≤ u ≤ p2 − 1, 0 ≤ v ≤ (p1 − 3)/2} .

It’s easy to check that

D ∪D0 = E ∪ E0 = H,(3.5)

D ∩D0 = E ∩ E0 = ∅,(3.6)

where

D0 := D0(p1, p2) :=

{
up1 : 1 ≤ u ≤ 1

2
(p2 − 1)

}
,

E0 := E0(p1, p2) :=

{
u+

1

2
(p1 − 1)p2 : 1 ≤ u ≤ 1

2
(p2 − 1)

}
,

H := H(p1, p2) := {1 ≤ r ≤ (p1p2 − 1)/2 : (r, p2) = 1} .

From the definition of set E ∑
r∈E

(
r

p2

)
= 0.(3.7)

By (3.5) and (3.6) we have∑
r∈E

(
r

p2

)
+
∑
r∈E0

(
r

p2

)
=
∑
r∈D

(
r

p2

)
+
∑
r∈D0

(
r

p2

)
.(3.8)

We find that∑
r∈D0

(
r

p2

)
=

(p2−1)/2∑
u=1

(
up1
p2

)
=

(
p1
p2

) (p2−1)/2∑
u=1

(
u

p2

)
=

(
p1
p2

)∑
r∈E0

(
r

p2

)
.(3.9)

Since
(
p1
p2

)
= 1, (3.7)–(3.9) imply that ∑

r∈D

(
r

p2

)
= 0.

Similarly we have ∑
r∈D

(
r

p1

)
= 0.

�
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Lemma 3.4. With above p1, p2 and D, if (p1
p2

) = −1 with p1 ≡ 1 (mod 4) and p2 ≡ 3

(mod 4), then ∑
r∈D

(
r

p1

)
≡ 0 (mod 4) and

∑
r∈D

(
r

p2

)
≡ 2 (mod 4).

Proof. We proceed as in the proof of Lemma 3.3 defining E, E0, and D0 as before. By
(3.7)–(3.9) we have ∑

r∈D

(
r

p2

)
= 2

∑
r∈E0

(
r

p2

)
,

since
(
p1
p2

)
= −1. From the definition of E0∑

r∈E0

(
r

p2

)
≡ |E0(p1, p2)| =

1

2
(p2 − 1) ≡ 1 (mod 2).

Hence ∑
r∈D

(
r

p2

)
= 2

∑
r∈E0

(
r

p2

)
≡ p2 − 1 ≡ 2 (mod 4).

Now we let E ′0 = E0(p2, p1). Then since
(
p2
p1

)
=
(
p1
p2

)
= −1 we have as before∑

r∈D

(
r

p1

)
= 2

∑
r∈E′

0

(
r

p1

)
.

But ∑
r∈E0

(
r

p1

)
≡ |E ′0| =

1

2
(p1 − 1) ≡ 0 (mod 2).

Therefore ∑
r∈D

(
r

p1

)
≡ 0 (mod 4).

�

The following lemma is the main result in this section.

Lemma 3.5. Suppose n ≡ 11 (mod 24) is the product of two primes n = p1p2. We have the
following.

(i) A(p1p2) ≡ 0 (mod 4), if

(
p1
p2

)
= 1,

(ii) A(p1p2) ≡ 2 (mod 4), if

(
p1
p2

)
= −1.
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Proof. (i). We assume
(
p1
p2

)
= 1. For p ∈ {p1, p2} and ε ∈ {+,−} we define N ε(p) to the

number of r ∈ D with
(
r
p

)
= ε. Here D = D(p1, p2) is defined in (3.2). By Lemma 3.3 we

have

N+(p1) = N−(p1) = N+(p2) = N−(p2) =
1

2
N,

where N = |D|. For ε1, ε2 ∈ {+,−} we define

M(pε11 , p
ε2
2 ) :=

{
r ∈ D :

(
r

p1

)
= ε1,

(
r

p2

)
= ε2

}
.

Letting M(p+1 , p
+
2 ) = k, we have

M(p+1 , p
−
2 ) = N+(p1)− k =

1

2
N − k,

M(p−1 , p
+
2 ) = N+(p2)− k =

1

2
N − k,

M(p−1 , p
−
2 ) = N −M(p+1 , p

+
2 )−M(p+1 , p

−
2 )−M(p−1 , p

+
2 ) = k.

Hence∑
r∈D

(
r

p1

)(
r

p2

)
= M(p+1 , p

+
2 ) +M(p−1 , p

−
2 )−M(p−1 , p

+
2 )−M(p+1 , p

−
2 ) = 4k −N.

By (3.3) and (3.4) we have

3A(n) ≡ 4k −N ≡ 0 (mod 4),

and this completes the proof of (i).

(ii). We assume p1 ≡ 1 (mod 4), p2 ≡ 3 (mod 4) and
(
p1
p2

)
= −1. By Lemma 3.4 we have

N+(p1) ≡ N−(p1) (mod 4),

so that

2N+(p1) ≡ N+(p1) +N−(p1) = N ≡ 0 (mod 4).

Also

N+(p2) ≡ N−(p2) + 2 (mod 4),

so that

2N+(p2) ≡ N+(p1) +N−(p2) + 2 = N + 2 ≡ 2 (mod 4).

Letting M(p+1 , p
+
2 ) = k, we have

M(p+1 , p
−
2 ) = N+(p1)− k,

M(p−1 , p
+
2 ) = N+(p2)− k,

M(p−1 , p
−
2 ) = N −N+(p1)−N+(p2) + k.
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Hence ∑
r∈D

(
r

p1

)(
r

p2

)
= M(p+1 , p

+
2 ) +M(p−1 , p

−
2 )−M(p−1 , p

+
2 )−M(p+1 , p

−
2 )

= 4k +N − 2N+(p1)− 2N+(p2)

≡ 2 (mod 4).

�

We combine Lemmas 3.1, 3.2 and 3.5 into

Theorem 3.6. Suppose n ≡ 11 (mod 24) is square-free and A(n) is defined by (1.7). We
have

(i) A(n) is odd if and only if n is a prime,
(ii) A(n) ≡ 2 (mod 4) if and only if n = p1p2 is a product of two primes which satisfy(

p1
p2

)
= −1.

4. General congruences for A(n)

In the previous section we considered the congruences for A(n) modulo 2 and 4 assuming
n is square-free. In this section we remove this restriction. we use the following identity to
complete the congruence of A(n). By [11, p. 101], (1.6) and (1.9), we have

(4.1) A(p2n) +

(
−n
p

)
A(n) + pA(n/p2) = (p+ 1)A(n),

for n ≡ 11 (mod 24) and any prime p > 3.
We use (4.1) to prove the following two lemmas.

Lemma 4.1. Suppose n ≡ 11 (mod 24) and p is any prime satisfying (p, 6n) = 1. Then

(i) A(p2n) is odd if and only if A(n) is odd,
(ii) A(p3n) is always even.

Proof. (i) Equation (4.1) implies

A(p2n) ≡ A(n) (mod 2),

since (n, p) = 1 and p is odd.

(ii). Replacing n by pn in (4.1) we have

A(p3n) ≡ 0 (mod 2),

again since (n, p) = 1 and p is odd. �

Lemma 4.2. Suppose p > 3 is prime. Then A(p4n) is odd if and only if A(n) is odd.
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Proof. Replacing n by p2n in (4.1) we have

A(p4n) ≡ A(n) (mod 2),

since p is odd. �

Now we can extend Theorem 3.6i to general n.

Theorem 4.3. A(n) is odd if and only if n has the form

n = p4a+1m2,

where p ≡ 11 (mod 24) is prime, and m and a are integers satisfying (m, 6p) = 1 and a ≥ 0.

Proof. (⇐) Suppose p ≡ 11 (mod 24) is prime, and m and a are integers satisfying (m, 6p) =
1 and a ≥ 0. By Theorem 3.6 and Lemmas 4.1 and 4.2 we have

A(p4a+1m2) ≡ A(pm2) ≡ A(p) ≡ 1 (mod 2).

(⇒) Assume that A(n) is odd. Then n ≡ 11 (mod 24) has the prime factorization

n =
s∏
i=1

pαi
i .

By Lemma 4.2 we have
A(n) ≡ A(n1) (mod 2),

where n = n1t
4 for some integer t such that

n1 =
s∏
i=1

pβii ,

with each 0 ≤ βi ≤ 3. By Lemma 4.1 A(n1) is even is βi = 3 for some i. Hence 0 ≤ βi ≤ 2
for each i. Now let

n2 =
∏
βi=1

pi.

Then by Lemma 4.1 we have

A(n1) ≡ A(n2) (mod 2),

which implies that A(n2) is odd. Theorem 3.6 implies that n2 is a prime so that

n = n2t
4
∏
βi=2

p2i .

Noting that (n2, pi) = 1 for βi = 2, we can see that n has the form n = p4a+1m2. �

Finally we extend Theorem 3.6ii to general n. We need some properties of A(n) modulo
4 from (4.1). We omit the proof of the following two lemmas and theorem since their proof
is similar to that of Lemmas 4.1 and 4.2 and Theorem 4.3.

Lemma 4.4. Suppose n ≡ 11 (mod 24), p is any prime satisfying (p, 6n) = 1, and A(n) is
even. Then
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(i) A(p2n) ≡ A(n) (mod 4),
(ii) A(p3n) ≡ 0 (mod 4).

Lemma 4.5. Suppose n ≡ 11 (mod 24), p is any prime satisfying (p, 6) = 1, and A(n) is
even. Then

A(p4n) ≡ A(n) (mod 4).

Theorem 4.6. A(n) ≡ 2 (mod 4) if and only if n has the form

n = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that
(
p1
p2

)
= −1, p1p2 ≡ 11 (mod 24), (m, 6p1p2) = 1 and

a, b ≥ 0 are integers.

5. Proof of Theorem 1.3(i)

In this section we prove our main theorem on congruences for a(n), which is given by
(1.5). We recast Theorem 1.3(i) in terms of A(n), which is defined in (1.7) and related to
a(n) by (1.8).

Theorem 5.1. Suppose p > 3 is prime and p 6≡ 11 (mod 24). Then for n ≥ 0 we have

A(p2n+ pk) ≡ 0 (mod 4),

provided (
k

p

)
= 1.

Proof. Suppose p > 3 is prime, p 6≡ 11 (mod 24), n ≥ 0 and
(
k
p

)
= 1. We let N = p2n+pk =

p(pn+ k) so that p ‖ N . By Theorem 4.3, A(N) is even. Now suppose A(N) ≡ 2 (mod 4).
Then by Theorem 4.6,

pn+ k = p4b+1
2 m2,

for some nonnegative integers b and m and some prime p2 satisfying
(
p
p2

)
= −1. But(

p2
p

)
=

(
p2m

2

p

)
=

(
pn+ k

p

)
=

(
k

p

)
= 1,

which is a contradiction. Hence

A(N) = A(p2n+ pk) ≡ 0 (mod 4).

�

We show how Theorem 1.3(i) follows easily from Theorem 5.1. Suppose p > 3 be prime,
24δp ≡ 1 (mod p2), and k, n ∈ Z where

(
k
p

)
= 1. By (1.8) we have

a(p2n+ (pk − 11)δp) = A(24(p2n+ (pk − 11)δp) + 11)

= A
(
p2
(

24n+ 11
p2

(24δp − 1)
)

+ pk
)
≡ 0 (mod 4),
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by Theorem 5.1, since p 6≡ 11 (mod 24). We note that 11
p2

(24δp − 1) ∈ Z since 24δp ≡ 1

(mod p2).

6. Congruences for other functions and concluding remarks

In this section we consider other weight 3/2 eta-products with non-trivial congruences
modulo 4. Theorem 1.3 contains three eta-products. The proof of Theorem 1.3(i) was
completed in Section 5 after preparations in Sections 2, 3, and 4. We omit the proof of
Theorem 1.3(ii) as it is completely analogous to that of part (i).

We sketch some details of the proof of part (iii) of Theorem 1.3(iii). This time r3(24n+7) =
0 so we instead consider a different ternary quadratic form. We let t(n) denote the number
of representations of n by the ternary quadratic form x2 + 3y2 + 3z2, so that

G(q) :=
∞∑
n=0

t(n)qn :=
∑

x,y,z∈Z

qx
2+3y2+3z2 .

Then we find
16c(n) = t(24n+ 7),

for n ≥ 0.
We need

Theorem 6.1 (Shemanske [13, Theorem 4.1]). If n is square-free, and n ≡ 7 (mod 24),
then we have

t(n) = 16h(−n).

where h(−n) is the class number of Q(
√
−n).

Also we need analogs of of Theorem 2.2 and Theorem 2.3. Their proof follows similarly.
Finally we need the following equation which is an analog of (4.1). We have

t(p2n) +

(
−n
p

)
t(n) + pt(n/p2) = (p+ 1)t(n),

for n ≥ 0 and any prime p > 3. This identity was conjectured by Cooper and Lam [7] and
proved by Guo, Peng, and Qin [9]. In particular see [9, Conjecture 1.5].

We note that each of the eta-products g(τ) which occur in parts (i),(ii),(iii) respectively
of Theorem 1.3 satisfy

ord(g(τ),∞) =
`

24
for ` = 11, 19 and 7 respectively. It is natural to ask whether there are other weight 3/2 eta-
products with similar mod 4 congruences where (`, 24) = 1 and 1 ≤ ` ≤ 23. We have found
eta-products that satisfy congruences of the type in Theorem 1.3 for each of the remaining
cases ` = 1, 5, 13, 17, 23. However the nature of these congruences is more complicated. We
will consider these other results in a later paper. It would be interesting if the methods of
this paper can be applied to approach Conjectures 1.1 and 1.2.
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