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Abstract. In 2012 Bryson, Ono, Pitman and Rhoades showed how the generating func-
tions for certain strongly unimodal sequences are related to quantum modular and mock
modular forms. They proved some parity results and conjectured some mod 4 congruences
for the coefficients of these generating functions. In 2016 Kim, Lim and Lovejoy obtained
similar results for odd-balanced unimodal sequences and made similar mod 4 conjectures.
We prove all of these mod 4 conjectures and similar congruences for the Andrews spt-
function and related mock theta functions. Our method of proof involves new Hecke-Rogers
type identities for indefinite binary quadratic forms and the Hurwitz class number.

1. Introduction

We prove some conjectured congruences mod 4 for certain unimodal sequences. We follow
Bryson, Ono, Pitman and Rhoades’s [18] definition of a strongly unimodal sequence. A
sequence of integers {aj}sj=1 is a strongly unimodal sequence of size n if it satisfies

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0 and a1 + a2 + · · ·+ as = n,

for some k. Let u(n) be the number of such sequences, and define the rank of such a sequence
as s− 2k + 1; i.e. the number terms after the maximum minus the number of terms before
it. Let u(m,n) be the number of strongly unimodal sequences of size n and rank m. Then

(1.1) U(z; q) :=
∑
m,n

u(m,n)zmqn =
∞∑
n=0

(−zq; q)n(−z−1q; q)nqn+1,

Date: December 15, 2020.
2020 Mathematics Subject Classification. 05A17, 05A39, 11E41, 11F33, 11F37, 11P81, 11P83, 11P84,

33D15.
Key words and phrases. Partitions, mock theta functions, Ramanujan-type congruences, Hurwitz class

number, unimodal sequences, Andrews spt-function, Hecke-Rogers series.
The first author was supported in part by the National Natural Science Foundation of China (Grant

No. 11971173) and an ECNU Short-term Overseas Research Scholarship for Graduate Students (Grant
no. 201811280047). The second author was supported in part by a grant from the Simon’s Foundation
(#318714).

1



2 RONG CHEN AND F. G. GARVAN

where we use the usual q-notation

(a; q)n :=
n−1∏
k=0

(1− aqk).

In addition, let u(a, b;n) be the number of strongly unimodal sequences of size n and rank
congruent to a mod b.

Bryson, Ono, Pitman and Rhoades [18] relate U(−1; q) with a quantum modular form
which is dual to a quantum modular form of Zagier [44]. They also show that U(±i; q) is
mock modular form and prove interesting parity results for the coefficients u(n). They made
the following conjecture.

Conjecture 1.1. Suppose ` ≡ 7, 11, 13, 17 (mod 24) is prime and

(
k

`

)
= −1. Then for all

n we have

(1.2) u(`2n+ kl − s(`)) ≡ 0 (mod 4),

where s(`) = 1
24

(`2 − 1). Moreover, for a ∈ {0, 1, 2, 3} we have

u(a, 4; `2n+ kl − s(`)) ≡ 0 (mod 2),(1.3)

and

u(0, 4; `2n+ kl − s(`)) ≡ u(2, 4; `2n+ kl − s(`)) (mod 4).(1.4)

Remark. Here and throughout this paper

(
·
·

)
denotes the Kronecker symbol.

In this paper we prove Conjecture 1.1 and a similar conjecture for a related unimodal
sequence function studied by Kim, Lim and Lovejoy [31]. We note that there is a stronger
result for (1.4) which include primes congruent to 1,±5 (mod 24). See Theorem 4.15. We
also prove analogous mod 4 results for Andrews’s [2] spt-function and for the coefficients of
related mock theta functions.

We describe Kim, Lim and Lovejoy’s odd-balanced unimodal sequence. A sequence of
integers {aj}sj=1 is unimodal of size n if it satisfies

0 < a1 ≤ a2 ≤ · · · ≤ ak−1 < ak > ak+1 ≥ · · · ≥ as−1 ≥ as > 0 and a1 + a2 + · · ·+ as = n,

Such a unimodal sequence is called odd-balanced if the peak ak is even, even parts to the
left and right of the peak are distinct and the odd parts to the left of the peak are identical
with those to the right. As before the rank is the number to right of the peak minus the
number to the left. We let v(n) be the number of odd-balanced unimodal sequences of size
2n+ 2 and let v(m,n) be the number with rank m. Then

V(z; q) :=
∑
m,n

v(m,n)zmqn =
∞∑
n=0

(−zq; q)n(−z−1q; q)nqn

(q; q2)n+1

.
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Kim, Lim and Lovejoy obtained quantum modular, mock modular and parity results analo-
gous to Bryson, Ono, Pitman and Rhoades’s results. They point out the mock modularity
properties of V(z; q) follow from some results of Mortenson [36, Theorem 4.4]. They also
made the following

Conjecture 1.2. Let ` 6≡ −1 (mod 8) be prime and let k be a positive integer satisfying
`‖8k + 7. If (8k + 7)/` is a quadratic residue modulo `, then

v(`2n+ k) ≡ 0 (mod 4).

For example, v(9n + 4) ≡ v(25n + 11) ≡ v(25n + 16) ≡ 0 (mod 4). Moreover, the same
congruences hold for the coefficients of V(±i, q).

Remark. This conjecture is false. For example let ` = 17 and k = 99. Then (8k+7)/` = 47
is a quadratic residue mod 17, but

v(99) = 81474897186 ≡ 2 (mod 4).

The primes congruent to 1 mod 8 must be excluded. The correct version of this conjecture,
which we prove, is given below in Theorem 4.1.

The Andrews’s spt-function [2] is related to strongly unimodal sequences. See equations
(1.5) and (1.6) below. Andrews defined spt(n) as the number of smallest parts in the par-
titions of n, and proved that it satisfied some surprising Ramanujan-type congruences mod
5, 7 and 13. Bringmann [16] showed the spt generating function is related to a weight 3/2
harmonic Maass form. The second author made the following

Conjecture 1.3. 1 Suppose ` > 3 is prime and ` 6≡ 23 (mod 24). Let
∼
ε =

∼
ε(`) = 1 if ` ≡ 1

(mod 24) and −1 otherwise. Then

spt(`n− s(`)) ≡ 0 (mod 4), (where s(`) = 1
24

(`2 − 1)),

when

(
n

`

)
=
∼
ε.

We prove this conjecture in Section 4.2.
The three conjectures above are related to some mod 4 properties for the coefficients of

certain mock theta functions. Mock theta functions were first defined by Ramanujan in his
famous last letter to Hardy [39, pp.354-355]. In this letter he gave examples of 17 such
functions: four of order 3, ten of order 5 and three of order 7. Since then more mock theta
functions have been found by others. See for example Watson [41], Andrews and Hickerson
[9], Gordon and McIntosh [26], Berndt and Chan [13] and McIntosh [33]. Many Ramanujan-
type congruences for mock theta functions have been found mainly to modulus relatively
prime to 6. See for example [10]. In a quite recent paper Wang [42] obtained some extensive
parity results for 21 of the 44 classical mock theta functions. In this paper we consider mock

1This conjecture was presented by the second author in a talk, entitled The Andrews spt-function mod 4,
at the AMS Special Session on Arithmetic Properties of Sequences from Number Theory and Combinatorics,
AMS Annual Meeting, Atlanta, January 4, 2017.
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theta congruences mod 4. The mod 4 congruences are much harder to prove. Conjecture 1.1
is related to Ramaujan’s third order mock theta functions ψ(q). In fact,

(1.5) U(±i; q) = ψ(q) =
∞∑
n=1

Nψ(n)qn =
∞∑
n=1

qn
2

(q; q2)n
.

The function ψ(q) is also related to the spt-function. Andrews, Liang and the second author
[8] showed that

(1.6) spt(n) ≡ (−1)n−1Nψ(n) (mod 4).

This means that Nψ(n) also satisfies Conjecture 1.3.
Conjecture 1.2 is related to the second order mock theta function

(1.7) A(q) =
∞∑
n=0

NA(n)qn =
∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)2n+1

=
∞∑
n=0

qn+1(−q2; q2)n
(q; q2)n+1

.

In fact,

qV(±i; q) = A(q),

and Kim, Lim and Lovejoy [31, Conjecture 1.3] made the following conjecture.

Conjecture 1.4. Let p 6≡ 7 (mod 8) be an odd prime, suppose 8δp ≡ 1 (mod p2) and

k, n ∈ Z where

(
k

p

)
= 1. Then

(1.8) NA(p2n+ (pk + 1)δp) ≡ 0 (mod 4).

In a previous paper [20] we found some weight 3/2 eta-products that satisfy a similar mod
4 behaviour. For example, let

f(q) :=
∞∑
n=0

a(n)qn :=
J3
3J

2
2

J2
1

,

where we have used the common notation

Jk := (qk; qk)∞ :=
∞∏
n=1

(1− qkn), and (z; q)∞ :=
∞∏
n=1

(1− zqn−1).

The following is a typical result we found.

Theorem 1.5 ([20, Theorem 1.3]). Let p > 3 be prime. Suppose 24δp ≡ 1 (mod p2), and k,

n ∈ Z where

(
k

p

)
= 1. Then

a(p2n+ (pk − 11)δp) ≡ 0 (mod 4), if p 6≡ 11 (mod 24).



UNIMODAL MOD 4 CONJECTURES AND MOCK THETA FUNCTIONS 5

A crucial aspect of the proof involves the connection with ternary quadratic forms and
the class number of imaginary quadratic fields. The approach in this paper is similar and
involves the Hurwitz class number.

In Section 2 we collect and prove some needed results for the Hurwitz class number function
H(N). In Section 3 we study four mock theta functions related to the Hurwitz class number
function: A(q) (second order), φ−(q) and σ(q) (sixth order), and V1(q) (eighth order), and
prove some surprising congruences mod 4 for their coefficients. In Section 4 we study the third
order mock theta function ψ(q), and we prove the main conjectures for strongly unimodal
sequences, odd-balanced unimodal sequences and the Andrews spt-function.

In this paper, we will often use the following elementary congruences.

(1.9)


J2
1

J2
= 1 + 2

∞∑
n=1

(−1)nqn
2 ≡ 1 (mod 2),

J5
2

J2
4J

2
1

= 1 + 2
∞∑
n=1

qn
2 ≡ 1 (mod 2),

and
J4
1

J2
2

≡ 1 (mod 4).

These follow from the well-known Jacobi triple product identity [3, Theorem 3.4, p.461]:

(1.10) (z; q)∞(z−1q; q)∞(q; q)∞ =
∞∑

n=−∞

(−1)nznqn(n−1)/2.

We will also use the following special cases of (1.10).

∞∑
n=0

qn(n+1)/2 =
J2
2

J1
,(1.11)

∞∑
k=−∞

qk(3k+1)/2 =
J2
3J2
J6J1

,(1.12)

As well as the triple product identity we will use the quintuple product identity [3, Theorem
3.9, p.467]:

(−z; q)∞(−z−1q; q)∞(qz2; q2)∞(z−2q; q2)∞(1.13)

=
∞∑

n=−∞

(−1)nz3nqn(3n−1)/2 +
∞∑

n=−∞

(−1)nz3n+1qn(3n+1)/2.

2. The Hurwitz class number

Following [22, Section 5.3] we define the Hurwitz class number H(N), where N is a non-
negative integer, as follows.

(1) If N ≡ 1, 2 (mod 4) then H(N) = 0.
(2) If N = 0 then H(0) = −1/12.
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(3) If N > 0, N ≡ 0, 3 (mod 4), then H(N) is the class number of positive definite binary
quadratic forms of discriminant −N , with those classes that contain a multiple of
x2 + y2 or x2 + xy + y2 counted with weight 1/2 or 1/3, respectively.

It is known that (see for example [43])

(2.1) H(n) =
2h(D)

ω(D)

∑
d|f

µ(d)

(
D

d

)
σ1(f/d),

if n = −Df 2, where −D is a fundamental discriminant, h(D) is the class number of Q(
√
D),

µ is the Möbius function, σ1 is the divisor sum, and ω(D) is the number of units in the ring

of integers of Q(
√
D). As mentioned before

(
·
·

)
is the Kronecker symbol. In particular for

f = 1 we have

(2.2) H(−D) =
2h(D)

ω(D)
.

2.1. Congruences. The main goal in this subsection is to characterize congruences mod 2
and 4 for H(4n + 3). The method of proof is completely analogous to the methods of [20],
where the same type of results were found for certain weight 3/2 eta-products. We provide
analogues of the results in [20] needed to prove our characterizations of the mod 2 and mod
4 congruences for H(4n+ 3). These characterizations are given in Theorem 2.5.

We recall the following theorems.

Theorem 2.1. We have 3H(3) = 1 and if n is square-free, n > 3 and n ≡ 3 (mod 4), then
we have

H(n) = h(−n) = 2t−1k,

where t is the number of distinct prime factors of n and k is the number of classes in each
genus of Q(

√
−n).

Remark. This theorem follows immediately from Proposition 3.11, Corollary 3.14 and The-
orem 3.15 in [23].

Theorem 2.2. If n is square-free and n ≡ 3 (mod 4), then we have

(2.3)

(
2−

(
n

2

))
H(n) =

(
2−

(
n

2

))
h(−n) =

(n−1)/2∑
r=1

(
r

n

)
.

Remark. This theorem follows from [15, Theorem 3, p.346]. We note that(
n

2

)
=

{
−1 if n ≡ 3 (mod 8),

1 if n ≡ 7 (mod 8).

The following is an analog of [20, Theorem 3.6].

Theorem 2.3. Suppose n ≡ 3 (mod 4) is square-free. We have
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(1) 3H(n) is odd if and only if n is a prime,
(2) 3H(n) ≡ 2 (mod 4) if and only if n = p1p2 is a product of two primes which satisfy(

p1
p2

)
= −1.

Remark. The result (1) is well-known and follows from Theorem 2.1. The result (2) follows
from Theorem 2.1 together with Propositions 3 and 4 in [37]. It may also be proved using
the method in [20, Section 3]. As pointed out by Pizer [37, p.189], (2) is also due to Hasse
[27].

The Hurwitz class number function also satisfies the analog of [20, eq.(4.1)].

Lemma 2.4. For each odd prime p, we have

(2.4) H(p2n) +

(
−n
p

)
H(n) + pH(n/p2) = (p+ 1)H(n),

for all n ≥ 0.

Remark. It is understood that H(n) = 0 if n is non-integral or negative. This result is
known. It is noted in the proof of Proposition 5.1 in [1]. Ahlgren, Bringmann and Lovejoy
[1] prove that the generating function for H(n) is a Hecke eigenform by using the fact that
the generating function is mock modular form of weight 3/2. For completeness we provide
an elementary proof that only uses (2.1). This argument was also observed by Beckwith,
Raum and Richter [14].

Proof. Suppose p is an odd prime. We may assume n ≡ 0 or 3 (mod 4). Then, by (2.1) and
(2.2), we have

H(n) = H(−D)G(D, f)

where n = −Df 2, D is a fundamental discriminant of Q(
√
−n), namely −D is square-free

or −D = 4m, m ≡ 1, 2 (mod 4) and m is square-free and

G(D, f) :=
∑
d|f

µ(d)

(
D

d

)
σ1(f/d).

It is clear that G(D, f) is a multiplicative function of f . We consider two cases.

Case 1. (p, f) = 1. Then n/p2 6∈ Z and H(n/p2) = 0.

H(p2n) = H(−D)G(D, pf) = H(−D)G(D, p)G(D, f)

= H(−D)

(
σ1(p)−

(
D

p

))
G(D, f) = H(−D)

(
1 + p−

(
D

p

))
G(D, f)

= −
(
D

p

)
H(n) + (1 + p)H(n),

so that (2.4) holds.
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Case 2. (p, f) > 1. Then we let f = pαf1 where α ≥ 1 and (p, f1) = 1. We have

H(p2n) = H(−D)G(D, pf) = H(−D)G(D, pα+1)G(D, f1),

H(n) = H(−D)G(D, f) = H(−D)G(D, pα)G(D, f1),

H(n/p2) = H(−D)G(D, f/p) = H(−D)G(D, pα−1)G(D, f1).

So we need to show

G(D, pα+1) + pG(D, pα−1)− (1 + p)G(D, pα) = 0

since p | n and

(
−n
p

)
= 0. This is an easy exercise since

G(D, pβ) = σ1(p
β)−

(
D

p

)
σ1(p

β), and σ1(p
β+2) = pβ+2 + pβ+1 + σ1(p

β),

for all β > 0. We have (2.4) in this case. �

By Theorem 2.3 and Lemma 2.4, we have the following theorem by a proof that is analogous
to that of Theorem 4.3 and Theorem 4.6 in [20].

Theorem 2.5. For n ≡ 3 (mod 4),

(1) 3H(n) is odd if and only if n has the form

n = p4a+1m2,

where p is prime, and m and a are integers satisfying (m, p) = 1 and a ≥ 0.
(2) 3H(n) ≡ 2 (mod 4) if and only if n has the form

n = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −1, (m, p1p2) = 1 and a, b ≥ 0 are

integers.

Remark. The factor 3 that appears in Theorem 2.3 and Theorem 2.5 is only to guarantee
that 3H(n) is an integer.

2.2. Generating functions. In this subsection we give identities for certain generating
functions

Ha,b(q) :=
∞∑
n=0

H(an+ b)qn,

where a is a divisor of 24 and (a, b) = 1.
Gauss’s Three Squares Theorem (see [34, Theorem 1.5]) shows that

24H8,3(q) =
∞∑
n=0

r3(8n+ 3)qn,



UNIMODAL MOD 4 CONJECTURES AND MOCK THETA FUNCTIONS 9

where r3(n) denotes the number of representations of n as a sum of 3 squares. Noting that
x2 + y2 + z2 ≡ 3 (mod 8) if and only if x, y, z are odd, we have

∞∑
n=0

r3(8n+ 3)q8n+3 =
∑

x,y,z∈Z

q(2x+1)2+(2y+1)2+(2z+1)2 = 8
∑

x,y,z≥0

q(2x+1)2+(2y+1)2+(2z+1)2

= 8q3
∑

x,y,z≥0

q4(x
2+x+y2+y+z2+z) = 8q3

(
∞∑
n=0

q4n(n+1)

)3

.

See also [40, Eq.(1.14), p.41]. Hence

(2.5) 3H8,3(q) =

(
∞∑
n=0

qn(n+1)/2

)3

=

(
J2
2

J1

)3

=
J6
2

J3
1

by (1.11). See also [40, Eq.(1.14), p.41]. By calculating the 3-dissection of H8,3(q) and using
(1.12) we find that

(2.6) H24,11(q) =

(
∞∑

n=−∞

qn(3n+1)/2

)2 ∞∑
n=0

q3n(n+1)/2 =
J3
3J

2
2

J2
1

,

and

(2.7) H24,19(q) =
∞∑

n=−∞

qn(3n+1)/2

(
∞∑
n=0

q3n(n+1)/2

)2

=
J3
6J2
J1

.

We let t(n) denote the number of representations of n by the ternary quadratic form x2 +
3y2 + 3z2. Then Bringmann and Kane [17, p.3] found that

(2.8) t(n) = 8
(
1 +

(
n
3

))
H(n),

when n ≡ 7 (mod 8) with 9 - n. Equation (2.8) can also be proved using [17, Lemma 4.14]
and Lemma 2.4. From equation (2.8) it can be shown that

(2.9) H24,7(q) =
∞∑

n=−∞

qn(3n+1)/2

(
∞∑
n=0

qn(n+1)/2

)2

=
J2
3J

5
2

J6J3
1

.

We omit the details. In [20] we obtained congruences modulo 4 for the coefficients of the
eta-products in (2.6), (2.7) and (2.9) using special cases of Theorem 2.5.

We will need the following result of Humbert [30, p.368].

(2.10) H8,7(q) =
1

qJ3
1

∞∑
n=0

(−1)n+1n2qn(n+1)/2

1 + qn
.
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See also [40, p.51]. Naturally we find that H8,7(q) is not an eta-product. Humbert [30, p.442]
also found

(2.11) H24,23(q) = q−23/24
∑

(x,y,z)∈D

q(2x
2−3z2−6y2)/24,

where

D = {(x, y, z) ∈ Z3 : 0 < 3z < 2x,−x < 3y < x, 2x2 − 3z2 − 6y2 ≡ 23 (mod 24)}.

3. Congruences for a class of mock theta functions

In this section we will discuss congruences for four mock theta functions associated with the
Hurwitz class number functions H4,3, H8,7, H12,11 and H24,23. These mock theta functions
are A(q) (second order), φ−(q) and σ(q) (sixth order), and V1(q) (eighth order). The parity
of the coefficients of these functions and many other mock theta functions was recently found
by Wang [42]. We determine their behaviour mod 4 by relating them with the Hurwitz class
number.

3.1. The second order mock theta function A(q). The second order mock theta function
A(q) is defined in (1.7). We find a congruence relation between the coefficients of A(q) and
the Hurwitz class number H(8n− 1). We have the following lemma.

Lemma 3.1. For each integer n > 0, we have

(3.1) NA(n) ≡ (−1)n+1H(8n− 1) (mod 4).

Proof. Ramanujan [38, p.8] found that A(q) can be written as an Appell-Lerch sum

(3.2) A(q) = q
(−q; q2)∞
(q2; q2)∞

∞∑
n=0

(−1)nq2n
2+3n

1− q2n+1
.

For a proof see [6, p.265]. Combining (2.10) and (3.2) and noting that (2n)2 ≡ 0 (mod 4)
and (2n+ 1)2 ≡ 1 (mod 4), we have

H8,7(q) =
1

qJ3
1

∞∑
n=0

(−1)n+1n2qn(n+1)/2

1 + qn
≡ J4

1

J2
2

· 1

qJ3
1

∞∑
n=0

(2n+ 1)2q(2n+1)(n+1)

1 + q2n+1
(3.3)

≡ J1
J2
2

∞∑
n=0

q2n
2+3n

1 + q2n+1
=
A(−q)
−q

(mod 4),

by (1.9). This implies

(−1)n+1NA(n) ≡ H(8n− 1) (mod 4),

which is (3.1). �

We note that by (3.1), NA(n) is odd if and only if H(8n − 1) is odd and NA(n) ≡ 2
(mod 4) if and only if H(8n− 1) ≡ 2 (mod 4). Also m2 ≡ 1 (mod 8) for each odd m. Thus
Theorem 2.5 implies
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Theorem 3.2. Let n be a positive integer.

(1) NA(n) is odd if and only if 8n− 1 has the form

8n− 1 = p4a+1m2,

where p is prime, and m and a are integers satisfying (m, p) = 1 and a ≥ 0.
(2) NA(n) ≡ 2 (mod 4) if and only if 8n− 1 has the form

8n− 1 = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −1, (m, p1p2) = 1 and a, b ≥ 0 are

integers.

Remark. Wang [42, Theorem 3.1] proved (1) by a different method.

Theorem 3.3. Kim, Lim and Lovejoy’s Conjecture 1.4 is true.

Proof. Let p 6≡ 7 (mod 8) be an odd prime and suppose n, k are nonnegative integers where(
k

p

)
= 1. Suppose m = p2n+ (pk + 1)δp, where δp = 1

8
(7p2 + 1). Since

(3.4) 8m− 1 ≡ pk (mod p2),

we have p‖8m − 1. Theorem 3.2(1) implies that NA(m) is even since p 6≡ 7 (mod 8). Now
suppose NA(m) ≡ 2 (mod 4). Then Theorem 3.2(2) and (3.4) imply that

8m− 1 = p1q4b+1t2, and k ≡ q4b+1t2 (mod p),

where q is a prime satisfying

(
p

q

)
= −1, (pq, t) = 1, and b ≥ 0, t > 0 are integers. Since

pq ≡ −1 (mod 8) either p or q ≡ 1 (mod 4) so by quadratic reciprocity
(
q
p

)
=
(
p
q

)
= −1.

But (
q

p

)
=

(
q4b+1t2

p

)
=

(
k

p

)
= 1,

which is a contradiction. Hence NA(m) 6≡ 2 (mod 4), and

NA(m) ≡ 0 (mod 4). �

3.2. The eighth order mock theta function V1(q). McIntosh [33] studied the eighth
order mock theta function

V1(q) =
∞∑
n=0

NV1(n)qn =
∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)n+1

.

By [33, p.286 Eq(4),Eq(7)] we have

(3.5) V1(q) = A(q2) + qP (q2),
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where

(3.6) P (q) = (−q; q)∞(−q2; q2)2∞(q4; q4)∞ =
J3
4

J1J2
.

We have the following lemma for NV1(n).

Lemma 3.4. For each integer n > 0, we have

(3.7) NV1(n) ≡ χ(n)H(4n− 1) (mod 4),

where χ(n) = −1 if n ≡ 0, 1 (mod 4) and χ(n) = 1 if n ≡ 2, 3 (mod 4).

Proof. Equations (3.1) and (3.5) give

NV1(2n) = NA(n) ≡ (−1)n+1H(8n− 1) (mod 4),

which implies that (3.7) holds for even n. By (1.9), (2.5) and (3.6) we have

P (−q) = (q;−q)∞(−q2; q2)2∞(q4; q4)∞ =
J4
4J

4
1

J10
2

· J
6
2

J3
1

≡ J6
2

J3
1

= 3H8,3(q) (mod 4).

Hence

NV1(2n+ 1) ≡ (−1)n+1H(8n+ 3) (mod 4),

which implies that (3.7) holds for odd n. �

By (3.7), NV1(n) is odd if and only if H(4n − 1) is odd and NV1(n) ≡ 2 (mod 4) if and
only if H(4n− 1) ≡ 2 (mod 4). From Theorem 2.5 we obtain

Theorem 3.5. For any positive integer n,

(1) NV1(n) is odd if and only if 4n− 1 has the form

4n− 1 = p4a+1m2,

where p is prime, and m and a are integers satisfying (m, p) = 1 and a ≥ 0.
(2) NV1(n) ≡ 2 (mod 4) if and only if 4n− 1 has the form

4n− 1 = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −1, (m, p1p2) = 1 and a, b ≥ 0 are

integers.

Remark. The result (1) was also found by Wang [42, Theorem 8.4].

Theorem 3.6. Let p 6≡ 3 (mod 4) be an odd prime, suppose 4δp ≡ 1 (mod p2) and k, n ∈ Z

where

(
k

p

)
= 1. Then

NV1(p
2n+ (pk + 1)δp) ≡ 0 (mod 4).
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Proof. Let p 6≡ 3 (mod 4) be an odd prime and suppose n, k are nonnegative integers where(
k

p

)
= 1. Suppose m = p2n+ (pk + 1)δp, where δp = 1

4
(3p2 + 1). Since

(3.8) 4m− 1 ≡ pk (mod p2),

we have p‖4m− 1. Theorem 3.5(1) implies that NV1(m) is even since p 6≡ 3 (mod 4). Now
suppose NV1(m) ≡ 2 (mod 4). Then Theorem 3.5(2) and (3.8) imply that

4m− 1 = p1q4b+1t2, and k ≡ q4b+1t2 (mod p),

where q is a prime satisfying

(
p

q

)
= −1, (pq, t) = 1, and b ≥ 0, t > 0 are integers. Since

pq ≡ −1 (mod 4) either p or q ≡ 1 (mod 4) so by quadratic reciprocity
(
q
p

)
=
(
p
q

)
= −1.

But (
q

p

)
=

(
q4b+1t2

p

)
=

(
k

p

)
= 1,

which is a contradiction. Hence NV1(m) 6≡ 2 (mod 4), and

NV1(m) ≡ 0 (mod 4).

�

3.3. The sixth order mock theta function φ−(q). Berndt and Chan [13] defined two
new sixth order mock theta functions including

φ−(q) =
∞∑
n=1

Nφ−(n)qn :=
∞∑
n=1

qn(−q; q)2n−1
(q, q2)n

.

We will show that φ−(q) is associated with H24,23. This is more difficult than showing A(q)
is associated with H8,7. Unfortunately Humbert’s formula (2.11) did not reveal the relations
needed. Instead we find a relation mod 4 between φ−(q) and part of the 3-dissection of
A(−q). Following Hickerson and Mortenson [29] we define

j(z; q) := (z; q)∞(z−1q; q)∞(q; q)∞,

and

m(x, q, z) :=
1

j(z; q)

∞∑
r=−∞

(−1)rqr(r−1)/2zr

1− qr−1xz
.

Hickerson and Mortenson used m(x, q, z) as a building block for expressing the mock theta
functions in terms of Appell-Lerch sums. They found

(3.9) A(q) = −m(q, q4, q2), ([29, Eq.(5.1),p.399])

and

(3.10) φ−(q) = −m(q, q3, q)− q J6
6

J2
2J

3
3

, ([29, Eq.(5.30),p.401].)
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We define the usual Atkin Up operator which acts on a formal power series

f(q) =
∑
n∈Z

a(n)qn,

by

Up (f(q)) =
∑
n∈Z

a(pn)qn.

Lemma 3.7. We have

(3.11) U3 (A(−q)) = φ−(q)− 4q
J2
6J

8
4J

2
1

J3J10
2

,

so that

U3 (A(−q)) ≡ φ−(q) (mod 4).

Proof. Replacing q by q4 and setting x = −q in [29, Corollary 3.8], we have

m(−q, q4,−1) =m(−q15, q36,−1) +
1

q3
m(−q3, q36,−1)(3.12)

+
1

q10
m(−q−9, q36,−1)− 1

2q3
J36J24J12J6J2

J2
72J8J3

,

after simplification. Replacing q by q4 and setting x = −q, z0 = q2 and z1 = −1 in [29,
Theorem 3.3], we have

(3.13) m(−q, q4,−1) = m(−q, q4, q2) +
J10
4 J1

2J4
8J

6
2

,

after simplification. Hence by (3.9), (3.12) and (3.13)

(3.14) U3 (−A(−q)) = m(−q5, q12,−1) +
1

q
m(−q, q12,−1)− U3 (G(q)) ,

where

G(q) =
1

2

(
J36J24J12J6J2
q3J2

72J8J3
+
J10
4 J1
J4
8J

6
2

)
.

The following identities may be proved using the theory of modular functions by verifying
that both sides hold for a sufficient number of terms:

U3

(
J3
24J2

J36J18J12J8

)
= 1, U3

(
J4
24J

10
4 J9J

12
6 J1

J2
18J

10
12J

4
8J

6
3J

6
2

)
= 1.

This verification was carried out using the second author’s maple ETA package, which is
available at

https://qseries.org/fgarvan/qmaple/ETA/

https://qseries.org/fgarvan/qmaple/ETA/
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The two functions involved can be rewritten in terms of eta-products, which turn out to be
modular functions on Γ0(72). We then deduce that

(3.15) U3

(
J36J24J12J6J2
q3J2

72J8J3

)
=
J2
12J6J

2
4J2

qJ2
24J

2
8J1

, U3

(
J10
4 J1
J4
8J

6
2

)
=
J2
6J

10
4 J

6
1

J4
8J3J

12
2

.

Substituting (3.15) into (3.14), we have

(3.16) U3 (−A(−q)) = m(−q5, q12,−1) +
1

q
m(−q, q12,−1)− J2

12J6J
2
4J2

2qJ2
24J

2
8J1
− J2

6J
10
4 J

6
1

2J4
8J3J

12
2

,

Replacing q by q3 and setting x = z = q2 in [29, Corollary 3.7], we have

(3.17) m(q2, q3, q2) = m(−q7, q12, q8)− 1

q
m(−q, q12, q8) + 2q

J3
12J

3
3J2

J3
6J4J

2
1

,

after simplification. Since the equations in [29, Proposition 3.1] imply that

m(x, q, z) +m(q/x, q, q/z) = 1,

we can rewrite (3.17) as

(3.18) m(q, q3, q) = m(−q5, q12, q4) +
1

q
m(−q, q12, q8)− 2q

J3
12J

3
3J2

J3
6J4J

2
1

.

Again using [29, Theorem 3.3] we have

m(−q5, q12,−1) = m(−q5, q12, q4) + P1(q),(3.19)

m(−q, q12,−1) = m(−q, q12, q8) + P2(q),(3.20)

where

P1(q) =
J3
12j(−q4; q12)j(q9; q12)

j(q4; q12)j(−1; q12)j(−q9; q12)j(q5; q12)
,

P2(q) =
J3
12j(−q4; q12)j(q9; q12)

j(q4; q12)j(−1; q12)j(−q9; q12)j(q; q12)
.

We have
(3.21)

P1(q) +
1

q
P2(q) =

J3
12j(−q4, q12)j(q9, q12)

qj(q4, q12)j(−1, q12)j(−q9, q12)j(q5, q12)j(q, q12)

(
j(q5, q12) + qj(q, q12

)
.

In the quintuple product identity (1.13) quintprod we let z = q and replace q by q4 to find

that

(3.22) j(q5, q12) + qj(q, q12) = (−q; q2)∞(q2; q2)∞.

Equations (3.21) P12ida and (3.22) quinpapp give the following identity

(3.23) P1(q) +
1

q
P2(q) =

J5
12J8J

3
3J

4
2

2qJ3
24J

4
6J

3
4J

2
1
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after some simplification using Jacobi’s triple product identity (1.10). Combining (3.10),
(3.16) and (3.18)-(3.23), we have

(3.24) U3 (A(−q)) = φ−(q) +
J2
12J6J

2
4J2

2qJ2
24J

2
8J1

+
J2
6J

10
4 J

6
1

2J4
8J3J

12
2

+
qJ6

6

J3
3J

2
2

− J5
12J8J

3
3J

4
2

2qJ3
24J

4
6J

3
4J

2
1

− 2qJ3
12J

3
3J2

J3
6J4J

2
1

.

Finally we have

(3.25)
J2
12J6J

2
4J2

2qJ2
24J

2
8J1

+
J2
6J

10
4 J

6
1

2J4
8J3J

12
2

+ q
J6
6

J3
3J

2
2

− J5
12J8J

3
3J

4
2

2qJ3
24J

4
6J

3
4J

2
1

− 2q
J3
12J

3
3J2

J3
6J4J

2
1

= −4q
J2
6J

8
4J

2
1

J3J10
2

.

This can be proved using the maple ETA package. The identity can be rewritten as an identity
for eta-products that are modular functions on Γ0(24). Equation (3.11) follows from (3.24)
and (3.25). The mod 4 congruence follows immediately. �

Lemmas 3.1 and 3.7 imply the following

Lemma 3.8. Let n be a positive integer.

(3.26) Nφ−(n) ≡ −H(24n− 1) (mod 4),

We note that if (m, 6) = 1 then m2 ≡ 1 (mod 24). Thus the following theorem follows
easily from Lemma 3.8 and Theorem 2.5.

Theorem 3.9. For n > 0 be an integer,

(1) Nφ−(n) is odd if and only if 24n− 1 has the form

24n− 1 = p4a+1m2,

where p is prime, and m and a are integers satisfying (m, p) = 1 and a ≥ 0.
(2) Nφ−(n) ≡ 2 (mod 4) if and only if 24n− 1 has the form

24n− 1 = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −1, (m, p1p2) = 1 and a, b ≥ 0 are

integers.

Remark. Wang [42, Theorem 6.6] proved (1) by showing that

Nφ−(n) ≡ Nψ(n) (mod 2).

Theorem 3.10. Let p > 3 be a prime and p 6≡ 23 (mod 24). Suppose 24δp ≡ 1 (mod p2)

and k, n ∈ Z where

(
k

p

)
= 1. Then

Nφ−(p2n+ (pk + 1)δp) ≡ 0 (mod 4).
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Proof. Let p 6≡ 23 (mod 24) be a prime > 3, and suppose n, k are nonnegative integers

where

(
k

p

)
= 1. Suppose m = p2n+ (pk + 1)δp, where δp = 1

24
(23p2 + 1). Since

(3.27) 24m− 1 ≡ pk (mod p2),

we have p‖24m − 1. Theorem 3.9(1) implies that Nφ−(m) is even since p 6≡ 23 (mod 24).
Now suppose Nφ−(m) ≡ 2 (mod 4). Then Theorem 3.9(2) and (3.27) imply that

24m− 1 = p1q4b+1t2, and k ≡ q4b+1t2 (mod p),

where q is a prime satisfying

(
p

q

)
= −1, (pq, t) = 1, and b ≥ 0, t > 0 are integers. Since

pq ≡ −1 (mod 24) either p or q ≡ 1 (mod 4) so by quadratic reciprocity
(
q
p

)
=
(
p
q

)
= −1.

But (
q

p

)
=

(
q4b+1t2

p

)
=

(
k

p

)
= 1,

which is a contradiction. Hence Nφ−(m) 6≡ 2 (mod 4), and

Nφ−(m) ≡ 0 (mod 4).

�

3.4. The sixth order mock theta function σ(q). Ramanujan’s sixth order mock theta
function

σ(q) :=
∞∑
n=0

Nσ(n)qn :=
∞∑
n=0

q(n+1)(n+2)/2(−q; q)n
(q; q2)n+1

was first studied by Andrews and Hickerson [9]. By [13, Theorem 1.1] we have

(3.28) σ(q) = φ−(q2) + qP3(q
2),

where

(3.29) P3(q) = (−q; q)2∞(−q3,−q3, q3; q3)∞ =
J2
6J

2
2

J3J2
1

.

The following lemma follows from Lemma 3.8 together with equations (3.28) and (2.6).

Lemma 3.11. For each integer n > 0, we have

(3.30) Nσ(n) ≡ (−1)n+1H(12n− 1) (mod 4).

Proof. By Lemma 3.8 and equation (3.28) we have

Nσ(2n) = Nφ−(n) ≡ −H(24n− 1) (mod 4),

which implies (3.30) for even n.
By (1.9), (2.6) and (3.29) we have

P3(q) =
J2
6J

2
2

J3J2
1

=
J3
3J

2
2

J2
1

·
(
J6
J2
3

)2

≡ J3
3J

2
2

J2
1

= H24,11(q) (mod 4).
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Hence
Nσ(2n+ 1) ≡ H(24n+ 11) (mod 4),

and (3.30) holds for odd n. �

Again we note that if (m, 6) = 1 then m2 ≡ 1 (mod 12). Thus the following theorem
follows easily from Lemma 3.11 and Theorem 2.5.

Theorem 3.12. For n > 0 be an integer,

(1) Nσ(n) is odd if and only if 12n− 1 has the form

12n− 1 = p4a+1m2,

where p is prime, and m and a are integers satisfying (m, p) = 1 and a ≥ 0.
(2) Nσ(n) ≡ 2 (mod 4) if and only if 12n− 1 has the form

12n− 1 = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −1, (m, p1p2) = 1 and a, b ≥ 0 are

integers.

Remark. Wang [42, Theorem 6.4] proved (1) by using a Hecke-Rogers series identity of
Andrews and Hickerson [9].

Theorem 3.13. Let p > 3 be a prime and p 6≡ 11 (mod 12). Suppose 12δp ≡ 1 (mod p2)

and k, n ∈ Z where

(
k

p

)
= 1. Then

Nσ(p2n+ (pk + 1)δp) ≡ 0 (mod 4).

Proof. Let p 6≡ 11 (mod 12) be a prime > 3, and suppose n, k are nonnegative integers

where

(
k

p

)
= 1. Suppose m = p2n+ (pk + 1)δp, where δp = 1

12
(11p2 + 1). Since

(3.31) 12m− 1 ≡ pk (mod p2),

we have p‖12m − 1. Theorem 3.12(1) implies that Nσ(m) is even since p 6≡ 23 (mod 24).
Now suppose Nσ(m) ≡ 2 (mod 4). Then Theorem 3.12(2) and (3.31) imply that

12m− 1 = p1q4b+1t2, and k ≡ q4b+1t2 (mod p),

where q is a prime satisfying

(
p

q

)
= −1, (pq, t) = 1, and b ≥ 0, t > 0 are integers. Since

pq ≡ −1 (mod 12) either p or q ≡ 1 (mod 4) so by quadratic reciprocity
(
q
p

)
=
(
p
q

)
= −1.

However (
q

p

)
=

(
q4b+1t2

p

)
=

(
k

p

)
= 1,

which is a contradiction. Hence Nσ(m) 6≡ 2 (mod 4), and

Nσ(m) ≡ 0 (mod 4).
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�

4. Mod 4 conjectures for unimodal sequences and the Andrews
spt-function

In Section 3 we derived mod 4 congruences for four mock theta functions that are closely
associated with the Hurwitz class number. In this section we prove the corrected version of
Kim, Lim and Lovejoy’s mod 4 conjectures for odd-balanced unimodal sequences, the second
author’s mod 4 conjectures for the Andrews’s spt-function and Bryson, Ono, Pitman, and
Rhoades’s mod 4 conjectures for strongly unimodal sequences. The proofs depend on some
of the mod 4 congruences for certain mock theta functions in the previous section, as well
as some new Hecke-Rogers identities.

4.1. Number of partitions in odd-balanced unimodal sequences. Recall from Section
1 that

(4.1) V(z; q) :=
∑
m,n

v(m,n)zmqn =
∞∑
n=0

(−zq; q)n(−z−1q; q)nqn

(q; q2)n+1

.

is the two-parameter generating function for odd-balanced unimodal sequences of size 2n+2
and rank m.

By [36, p.258] we have(
1 +

1

z

)
V(z, q) =

(−q; q)∞
(q; q)∞

(∑
n,r≥0

−
∑
n,r<0

)
(−1)nzrqn

2+2n+(2n+1)r+r(r+1)/2(4.2)

=
(−q; q)∞
(q; q)∞

∑
n,r≥0

(−1)n(zr + z−r−1)qn
2+2n+(2n+1)r+r(r+1)/2

=
(−q; q)∞
(q; q)∞

∑
n,r≥0

(−1)n(zr + z−r−1)q(n+r)
2+2(n+r)−r(r+1)/2

=
(−q; q)∞
(q; q)∞

∞∑
n

n∑
r=0

(−1)n+r(zr + z−r−1)qn
2+2n−r(r+1)/2.

See also [31, Eq (1.12)]. Hence letting z = 1 we find that

(4.3)
∞∑
n=0

v(n)qn = V(1, q) =
(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
r=0

(−1)n+rqn
2+2n−r(r+1)/2,

where v(n) is the number of odd-balanced unimodal sequences of size 2n+ 2. Letting z = i
in (4.1) and (4.2) we have

(4.4)
A(q)

q
= V(i, q) =

(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
r=0

(−1)n+r+r(r+1)/2qn
2+2n−r(r+1)/2,
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by (1.7), after some simplification. The form of the series in equations (4.3) and (4.4) is
quite similar. It is easy see that

v(n) ≡ NA(n+ 1) (mod 2).

As expected Theorem 3.2(1) confirms the equivalent [31, Theorem 1.1]. We now consider
v(n) mod 4. In this section we prove

Theorem 4.1. Let p 6≡ ±1 (mod 8) be an odd prime, suppose 8δp ≡ 1 (mod p2) and k, n ∈ Z

where

(
k

p

)
= 1. Then

v(p2n+ (pk − 7)δp) ≡ 0 (mod 4).

Remark. We have corrected Kim, Lim and Lovejoy’s original Conjecture 1.2.

We define

Dv(q) :=
∞∑
n=0

dv(n)qn :=
∞∑
m=0

m∑
r=0

qm
2+2m−r(r+1)/2.

Lemma 4.2. If p ≡ 3, 5 (mod 8) is prime and p‖8n+ 7 then dv(n) = 0.

Proof. Suppose that p ≡ 3, 5 (mod 8) is prime and p‖8n+7. Suppose by way of contradiction
that dv(n) 6= 0. Then

8n+ 7 = 8(m2 + 2m− r(r + 1)/2) + 7 = 8(m+ 1)2 − (2r + 1)2,

for some integers m ≥ 0 and 0 ≤ r ≤ m. Since p | 8n+ 7 this implies

8(m+ 1)2 ≡ (2r + 1)2 (mod p).

Since p ≡ 3, 5 (mod 8),

(
8

p

)
= −1 and (m + 1) ≡ (2r + 1) ≡ 0 (mod p). But this implies

p2 | 8n+ 7, which contradicts p‖8n+ 7. We conclude that dv(n) = 0. �

Proof of Theorem 4.1. Let

D0(q) := V(1, q)− A(q)

q
=
∞∑
n=0

(v(n)−NA(n+ 1))qn.

By (4.3) and (4.4) we have

D0(q) =
(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
r=0

(−1)n+r(1− (−1)r(r+1)/2)qn
2+2n−r(r+1)/2

= 2
(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
r=0

(−1)n+rε(r)qn
2+2n−r(r+1)/2,



UNIMODAL MOD 4 CONJECTURES AND MOCK THETA FUNCTIONS 21

where ε(r) = 1 if r ≡ 1, 2 (mod 4) and ε(r) = 0 otherwise. We recall (1.9) and note that

(q; q)∞
(−q; q)∞

=
J2
1

J2
= 1 + 2

∞∑
n=1

(−1)nqn
2 ≡ 1 (mod 2).

Therefore we have

(4.5) D0(q) ≡ 2
∞∑
n=0

n∑
r=0

(−1)n+rε(r)qn
2+2n−r(r+1)/2 (mod 4).

Let
∞∑
n=0

d(n)qn :=
∞∑
n=0

n∑
r=0

(−1)n+rε(r)qn
2+2n−r(r+1)/2.

Now assume p 6≡ ±1 (mod 8) is an odd prime, and let n, k be integers where

(
k

p

)
= 1.

Suppose m = p2n+ (pk − 7)δp, where δp = 1
8
(7p2 + 1). Then

8m+ 7 ≡ pk (mod p2),

which implies that p‖8m + 7. Since p ≡ 3, 5 (mod 8), Lemma 4.2 implies dv(m) = 0. But
dv(m) = 0 implies d(m) = 0 and

NA(m+ 1) ≡ v(m) (mod 4),

by (4.5). Now
m+ 1 ≡ (pk + 1)δp − 8δp + 1 ≡ (pk + 1)δp (mod p2).

So NA(m+ 1) ≡ 0 (mod 4) by Theorem 3.3 and hence v(m) ≡ 0 (mod 4). �

4.2. The Andrews’ spt(n) function. By equation (1.6) and [8, Theorem 1.3] we have the
following theorem.

Theorem 4.3. For each n > 0, Nψ(n) is odd if and only if

24n− 1 = p4a+1m2,

for some prime p, and some integers a, m satisfying (m, p) = 1 and a ≥ 0.

Berndt and Chan [13, p.776] found a Hecke-Rogers identity for the sixth order mock theta
function φ−(q).

(4.6)
J2
1

J2
φ−(q) =

∞∑
n=1

n∑
m=1−n

(−1)n−1qn(3n−1)−2m
2+m(1− q2n).

We need a similar Hecke-Rogers identity for ψ(q).
Andrews [5, Eq. (1.10)], Mortenson [35, Eq. (2.5)], Chen and Wang [21, Eq. (4.37)] have

found Hecke-Rogers series for ψ(q). The second author [25] has shown how to express each
of Ramanujan’s third order mock theta functions in terms of Hecke-Rogers series. We need
a new additional Hecke-Rogers series for ψ(q).
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Using Jacobi’s triple product identity (1.10) we find that

(4.7)
∞∑

n=−∞

(−1)nqn(n+1)/2+bn = 0

for any integer b. Similarly for any integer b we have

(4.8)
∞∑

n=−∞

(−1)nqn(3n+1)/2+bn =


(−1)bq−b(b+1)/2(q)∞, if b ≡ 0 (mod 3),

0, if b ≡ 1 (mod 3),

(−1)b−1q−b(b+1)/2(q)∞, if b ≡ 2 (mod 3).

See [12, p.99].

Lemma 4.4. We have

(4.9)
J2
1

J2
ψ(q) =

∞∑
n=1

n∑
m=1−n

(−1)m−1qn(3n−1)−2m
2+m(1− q2n).

Remark. We note that this Hecke-Rogers series for ψ(q) may be deduced from a general
theorem of Bradley-Thrush [19]. In fact a two-parameter generalization may be obtained
from letting k = 2, p = q6 and x = q−2 in [19, Theorem 7.3]. Our proof is different. This
method will be used to obtain a new Hecke-Rogers series for U(q), the generating function
for strongly unimodal sequences. See Lemma 4.17 below.

Proof. From [21, Eq. (4.37)] we have

(4.10) J1ψ(q) =
∞∑
n=1

n∑
r=1

(−1)n−1q2n
2−n−r(r−1)/2(1− q2n).

We note that (4.10) also follows from [31, Eq(1.3),Eq(1.5)]. We define

Ak :=
∞∑
n=1

n∑
r=1

(−1)n−1q2n
2−n−(r−k)(r−k−1)/2(1− q2n),

so that A0 = J1ψ(q). Using (4.8) we derive a recurrence relation for Ak.

Ak + A−k − (Ak−1 + A1−k)

=
∞∑
n=1

n∑
r=1

(−1)n−1(q2n
2−n−(r−k)(r−k−1)/2 + q2n

2−n−(r+k)(r+k−1)/2)(1− q2n)

−
∞∑
n=1

n∑
r=1

(−1)n−1(q2n
2−n−(r−k+1)(r−k)/2 + q2n

2−n−(r+k−1)(r+k−2)/2)(1− q2n)

=
∞∑
n=1

(−1)n(q2n
2−n−(n−k)(n−k+1)/2 − q2n2−n−(n+k)(n+k−1)/2)(1− q2n)
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=
∞∑

n=−∞

(−1)nqn(3n+1)/2+n(1−k)−k(k−1)/2 −
∞∑

n=−∞

(−1)nqn(3n+1)/2+nk−k(k−1)/2

= −J1ak,

where

a3r := (−1)rq−6r
2+r,

a3r+1 := (−1)r−1q−6r
2−r,

a3r+2 := (−1)r−1(q−6r
2−5r−1 + q−6r

2−7r−2).

Therefore for k > 0 we have

(4.11) Ak + A−k = 2A0 − J1
k∑
r=1

ar.

By (4.7) we find that
(4.12)

∞∑
k=−∞

(−1)kAkq
k2 =

∞∑
n=1

n∑
r=1

(−1)n−1q2n
2−n−r(r−1)/2(1− q2n)

∞∑
k=−∞

(−1)kqk(k−1)/2+rk = 0.

By (4.11)

(4.13)
∞∑

k=−∞

(−1)kAkq
k2 =

J2
1

J2
A0 − J1

∞∑
k=1

k∑
r=1

(−1)kqk
2

ar.

By (4.12) and (4.13) we have

(4.14)
J2
1

J2
A0 = J1

∞∑
k=1

k∑
r=1

(−1)kqk
2

ar.

Let G(r, k) := (−1)kqk
2
ar and F (m,n) :=

∼
sg(n)(−1)m−1qn(3n−1)−2m

2+m, where
∼
sg(n) = 1 for

n > 0,
∼
sg(0) = 0 and

∼
sg(n) = −1 for n < 0. It is easy to check that

G(3s+ t, k) =


F (3s− k, 2s− k), if t = 0,

F (k − 3s, k − 2s), if t = 1,

F (3s+ 2− k, k − 2s− 1) + F (k − 3s− 1, 2s− k + 1) if t = 2,

assuming 0 < 3s+ t ≤ k. We find that

(4.15)
∞∑
k=1

∑
0<3s≤k

G(3s, k) =
∞∑
k=1

∑
0≤3s≤k

F (3s− k, 2s− k) =
−1∑

n=−∞

0∑
m=1+n

F (m,n).
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Similarly we find that

(4.16)
∞∑
k=1

∑
0<3s+1≤k

G(3s+ 1, k) =
∞∑
n=1

n∑
m=1

F (m,n),

and

(4.17)
∞∑
k=1

∑
0<3s+2≤k

G(3s+ 2, k) =

(
∞∑
n=1

0∑
m=1−n

+
−1∑

n=−∞

−n∑
m=1

)
F (m,n).

Hence by (4.14) - (4.17)

J2
1

J2
ψ(q) =

∞∑
k=1

k∑
r=1

G(r, k) =
∞∑

n=−∞

|n|∑
m=1−|n|

F (m,n)(4.18)

=
∞∑
n=1

n∑
m=1−n

(−1)m−1qn(3n−1)−2m
2+m(1− q2n).

�

We define the following three series

D0(q) :=
∞∑
n=1

d0(n)qn :=
∞∑

n=−∞

∑
1−|n|≤m≤|n|

qn(3n−1)−m(2m−1),(4.19)

D1(q) :=
∞∑
n=1

d1(n)qn :=
∞∑

n=−∞

∑
1−|n|≤m≤|n|

(1− ε(m,n))qn(3n−1)−m(2m−1),

D2(q) :=
∞∑
n=1

d2(n)qn :=
∞∑

n=−∞

∑
1−|n|≤m≤|n|

ε(m,n)qn(3n−1)−m(2m−1),

where ε(m,n) = 1 if m ≡ n (mod 2) and ε(m,n) = 0 otherwise. Clearly D0(q) = D1(q) +
D2(q).

Lemma 4.5. We have

φ−(q)− ψ(q) ≡ 2D1(q) (mod 4).

Proof. By (4.6) and (4.9)

φ−(q)− ψ(q) =
J2
J2
1

∞∑
n=1

n∑
m=1−n

((−1)n−1 − (−1)m−1)qn(3n−1)−2m
2+m(1− q2n)

≡2
∞∑
n=1

n∑
j=1−n

(−1)n−1 − (−1)m−1

2
qn(3n−1)−2m

2+m(1 + q2n)
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≡2
∞∑

n=−∞

∑
1−|n|≤m≤|n|

(1− ε(m,n))qn(3n−1)−2m
2+m

≡2D1(q) (mod 4).

�

We note that Lemma 4.5 implies that Nφ−(n) and Nψ(n) have the same parity. This is
confirmed by Theorem 3.9(1) and Theorem 4.3. The following two lemmas are related to
solutions of the Pell equation

(4.20) u2 − 6v2 = m,

where u, v, m are integers. Following [7] we say two solutions (u, v) and (u′, v′) are equiva-
lent if

(4.21) u′ + v′
√

6 = ±(5 + 2
√

6)r(u+ v
√

6),

for some integer r. By [7, Lemma 3], if m > 0, then each equivalence class of solutions of
(4.20) contains a unique (u, v) with u > 0 and

(4.22) − 1
3
u < v ≤ 1

3
u.

We define H√6(m) to be the number of inequivalent solutions to (4.20). By (4.22) we have

(4.23)
∞∑
m=1

H√6(m)qm =
∞∑
u=1

∑
−1
3
u<v≤1

3
u

qu
2−6v2 .

Lovejoy [32] has calculated H√6(m). Wang [42, Lemma 2.7] extended this to negative m.

Lemma 4.6 (Lovejoy [32, Theorem 1.3]). Let m have prime factorization

m = 2a3b
∏̀
i=1

peii

n∏
j=1

q
fj
j

t∏
k=1

rgkk

where the pi ≡ ±7,±11 (mod 24), the qj ≡ 1, 19 (mod 24), and the rk ≡ 5, 23 (mod 24).
Then

H√6(m) =

{
0, if some ei is odd or a+

∑
gk is odd,∏n

j=1(fj + 1)
∏t

k=1(gk + 1), otherwise.

Corollary 4.7. Let 24n− 1 have the prime factorization

24n− 1 =
k∏
i=1

paii

l∏
j=1

q
bj
j
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where pi ≡ 1, 5, 19, 23 (mod 24) and qj ≡ 7, 11, 13, 17 (mod 24). If some bj is odd then
d0(n)=0, otherwise we have

(4.24) d0(n) =
1

2

k∏
i=1

(ai + 1).

Proof. We note u2− 6v2 ≡ −2 (mod 48) if and only if u ≡ ±2 (mod 12) and v is odd. Thus
by (4.23) we find that

∞∑
n=1

H√6(48n− 2) =
∞∑
n=1

( ∑
−2n<m≤2n

q(12n−2)
2−6(2m−1)2 +

∑
−2n<m≤2n

q(12n+2)2−6(2m−1)2
)

(4.25)

= 2
∞∑
n=1

( ∑
−n<m≤n

q(12n−2)
2−6(4m−1)2 +

∑
−n<m≤n

q(12n+2)2−6(4m−1)2
)

= 2
∞∑
n=1

d0(n)q48n−2.

If some bj is odd then by Lemma 4.6 H√6(48n− 2) = 0 and d0(n) = 0. We assume all the
bj are even and note that p2 ≡ 1 (mod 24) for (p, 6) = 1. Next we show that the number
of primes congruent to 5 or 23 (counted with multiplicity) in the factorization of 48n − 2
is odd. If it is even then the product of these primes is either 1 or 5 · 23 ≡ 19 (mod 24).
But this would imply that 24n− 1 is either 1 or 19 (mod 24), which is a contradiction. The
result follows from (4.25) and Lemma 4.6. �

We also need Andrews, Dyson and Hickerson’s [7] results for
∞∑
n=1

S∗(n)qn =
∞∑
n=1

(−1)nqn
2

(q; q2)n
.

Lemma 4.8. For n ≥ 1 let s(n) := d1(n)− d2(n) and

24n− 1 =
k∏
i=1

paii

l∏
j=1

q
bj
j

be the prime factorization of 24n−1, where the pi ≡ ±1 (mod 24), and the qj ≡ ±5,±7,±11
(mod 24). If some bj ≡ 1 (mod 2) then s(n) = 0, otherwise we have

|s(n)| = 1

2

k∏
i=1

(ai + 1).

Proof. By [7, Eq.(5.2)] we find that

∞∑
n=1

S∗(n)qn =
∞∑
n=1

2n−1∑
j=0

(−1)nqn(3n−1)−j(j+1)/2(1 + q2n)
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=
∞∑
n=1

n∑
m=−n+1

(−1)nqn(3n−1)−m(2m−1)(1 + q2n) =
∞∑

n=−∞

|n|∑
m=−|n|+1

(−1)nqn(3n−1)−m(2m−1).

After replacing q by −q we have

∞∑
n=1

(−1)n+1S∗(n)qn =
∞∑

n=−∞

|n|∑
m=−|n|+1

(−1)m+n+1qn(3n−1)−m(2m−1) =
∞∑
n=1

s(n)qn.

Hence
|s(n)| = |S∗(n)|.

By [7, Theorem 5] we have
S∗(n) = 1

2
T (1− 24n),

where T (m) is the excess of the number of solutions of (4.20) satisfying u+3v ≡ ±1 (mod 12)
over the number satisfying u+3v ≡ ±5 (mod 12). The result then follows from [7, Theorem
3] which gives a formula for T (m) in terms of the prime factorisation of m when m ≡ 1
(mod 6). �

We can determine the difference D1(q) by Lemma 4.7 and Lemma 4.8. First we consider
the case when is square-free.

Lemma 4.9. Let n be an integer such that Nψ(n) is even and 24n− 1 is square-free. Then
d1(n) is odd if and only if

24n− 1 = p1p2,

where p1 and p2 are primes for which {p1, p2} ≡ {5, 19} (mod 24).

Proof. Suppose Nψ(n) is even where 24n− 1 is a square-free positive integer. Let

24n− 1 =
k∏
i=1

pi

be the prime factorization of 24n− 1. If k = 1 then Theorem 4.3 implies that Nψ(n) is odd
which is a contradiction. Hence either k = 2 or k > 2. If k > 2 then Lemmas 4.7 and 4.8
imply that d0(n) ≡ s(n) ≡ 0 (mod 4) and

2d1(n) = d0(n) + s(n) ≡ 0 (mod 4) and d1(n) ≡ 0 (mod 2).

Now suppose k = 2, so that 24n − 1 is a product of two primes p1 and p2. We note that
p1 ≡ −p2 (mod 24). There are three cases.

Case 1: {p1, p2} ≡ {1, 23} (mod 24). Lemmas 4.7 and 4.8 imply that

2d1(n) = d0(n) + s(n) = 2± 2 ≡ 0 (mod 4), and d1 ≡ 0 (mod 2).

Case 2: {p1, p2} ≡ {5, 19} (mod 24). Lemmas 4.7 and 4.8 imply that

2d1(n) = d0(n) + s(n) = 2 + 0 = 2, and d1 = 1.
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Case 3: {p1, p2} ≡ {7, 17} (mod 24). Lemmas 4.7 and 4.8 imply that

2d1(n) = d0(n) + s(n) = 0 + 0 = 0, and d1 = 0.

Case 4: {p1, p2} ≡ {11, 13} (mod 24). Lemmas 4.7 and 4.8 imply that

2d1(n) = d0(n) + s(n) = 0 + 0 = 0, and d1 = 0.

Hence we see that d1(n) is odd if and only if {p1, p2} ≡ {5, 19} (mod 24). �

To extend Lemma 4.9 to the case when 24n − 1 is not square-free we need an analog of
Lemma 2.4. Fortunately we have the following result.

Theorem 4.10 ([24, Theorem 1.3(i)]). If ` ≥ 5 is prime then
(4.26)

spt(`2n− s`) +

(
3

`

)(
1− 24n

`

)
spt(n) + ` spt

(
n+ s`
`2

)
≡
(

3

`

)
(1 + `) spt(n) (mod 72),

where s` = 1
24

(`2 − 1).

By (1.6) we have the following corollary.

Corollary 4.11. If ` ≥ 5 is prime then

Nψ(`2n− s`) + (−1)s`
(

3

`

)(
1− 24n

`

)
Nψ(n) + `Nψ

(
n+ s`
`2

)
(4.27)

≡ (−1)s`
(

3

`

)
(1 + `)Nψ(n) (mod 4).

Following [11, p.353] we use the standard practice of rewriting an arithmetic function in
terms of 24n− 1. We write

∼
Nψ(m) =

{
Nψ(n), if m = 24n− 1,

0, if m < 23 or m 6≡ −1 (mod 24) or m is non-integral.

We rewrite Corollary 4.11 in terms
∼
Nψ and derive some congruence properties.

Lemma 4.12. Let ` ≥ 5 be prime. Then

(i)

(4.28)
∼
Nψ(`2n) + (−1)s`

(
−3n

`

)
∼
Nψ(n) + `

∼
Nψ

( n
`2

)
≡ (−1)s`

(
3

`

)
(1 + `)

∼
Nψ(n) (mod 4).

(ii) If (`, n) = 1 and
∼
Nψ(n) is even then

(a)
∼
Nψ(`2n) ≡

∼
Nψ(n) (mod 4),

(b)
∼
Nψ(`3n) ≡ 0 (mod 4).

(iii)
∼
Nψ(`4n) ≡

∼
Nψ(n) (mod 4).
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Proof. (i). The congruence (4.28) follows immediately from (4.27).

(ii). Suppose (n, `) = 1 and
∼
Nψ(n) is even. Since ` is odd we have (1 + `)

∼
Nψ(n) ≡ 0

(mod 4), and
∼
Nψ(n/`s) = 0 since (n, `) = 1. The congruence (4.28) implies that

∼
Nψ(`2n) ≡

∼
Nψ(n) (mod 4).

Replacing n by `n in (4.28) gives

∼
Nψ(`3n) ≡ (−1)s`

(
3

`

)
(1 + `)

∼
Nψ(`n) (mod 4).

Either
∼
Nψ(`n) is even or

∼
Nψ(`n) is odd and ` ≡ −1 (mod 24). In both cases we have

(1 + `)
∼
Nψ(`n) ≡ 0 (mod 4) and

∼
Nψ(`3n) ≡ 0 (mod 4).

(iii). Replacing n by `2n in (4.27) we have

(4.29)
∼
Nψ(`4n) ≡ −`

∼
Nψ(n) + (−1)s`

(
3

`

)
(1 + `)

∼
Nψ(`2n) (mod 4).

There are three cases.
Case 1: ` ≡ 3 (mod 4). From (4.29) we have

∼
Nψ(`4n) ≡

∼
Nψ(n) (mod 4),

since −` ≡ 1 (mod 4) and (1 + `) ≡ 0 (mod 4).

Case 2: ` ≡ 1 (mod 4) and
∼
Nψ(`2n) is odd. Since ` 6≡ 23 (mod 24) Theorem 4.3 implies

that
∼
Nψ(n) is also odd, and from 4.29 we have

∼
Nψ(`4n) ≡

∼
Nψ(n)− (1 + `)

(
∼
Nψ(n)− (−1)s`

(
3

`

)
∼
Nψ(`2n)

)
(mod 4)

≡
∼
Nψ(n) (mod 4).

Case 3: ` ≡ 1 (mod 4) and
∼
Nψ(`2n) is even. Again since ` 6≡ 23 (mod 24) Theorem 4.3

implies that
∼
Nψ(n) is also even and from 4.29 we see that

∼
Nψ(`4n) ≡

∼
Nψ(n) (mod 4).

This completes the proof of (iii) in all cases. �

Theorem 4.13. For n > 0 be an integer, Nψ(n) ≡ 2 (mod 4) if and only if 24n− 1 has the
form

24n− 1 = p4a+1
1 p4b+1

2 m2,
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where p1 and p2 are primes such that

(
p1
p2

)
= −ε(p2) for ε(p) = −1 if p ≡ ±5 (mod 24)

and ε(p) = 1 otherwise, (m, p1p2) = 1 and a, b ≥ 0 are integers.

Proof. Suppose n > 0. First we prove the result when 24n− 1 is square-free. By Lemma 4.5

(4.30) Nφ−(n)−Nψ(n) ≡ 2d1(n) (mod 4).

We assume 24n − 1 is square-free and Nψ(n) ≡ 2 (mod 4). The congruence (4.30) implies
that Nφ−(n) ≡ 0 or 2 (mod 4).
Case 1: Nφ−(n) ≡ 0 (mod 4). Therefore d1(n) is odd and Lemma 4.9 implies that 24n−1 =
p1p2 for primes p1, p2 satisfying {p1, p2} ≡ {5, 19} (mod 24). Theorem 3.9 implies that(
p1
p2

)
= 1 = −ε(p2).

Case 2: Nφ−(n) ≡ 2 (mod 4). By Theorem 3.9 there are primes p1, p2 satisfying
(
p1
p2

)
= −1

and 24n − 1 = p1p2. By (4.30) d1(n) is even and Lemma 4.9 implies that p1, p2 6≡ ±5
(mod 24), so that

(
p1
p2

)
= −ε(p2).

Similarly we can show the converse that if 24n − 1 = p1p2 where p1 and p2 are primes
satisfying

(
p1
p2

)
= −ε(p2), then Nψ(n) ≡ 2 (mod 4). This completes the proof of the result

when 24n− 1 is square-free.
We now consider the general case. For this part we first assume that Nψ(n) ≡ 2 (mod 4).

We let M = 24n− 1 so that
∼
Nψ(M) = Nψ(n) and

∼
Nψ(M) ≡ 2 (mod 4). We write the prime

factorization of M as

M =
k∏
i=1

p4ai+rii ,

where the ai, ri are integers satisfying 0 ≤ ri ≤ 3. Then by Lemma 4.12(iii) we have
∼
Nψ(M) ≡

∼
Nψ(M ′) ≡ 2 (mod 4),

where

M ′ =
k∏
i=1

prii ≡ −1 (mod 24).

Lemma 4.12(ii)(b) implies that none of the ri are equal to 3. Lemma 4.12(ii)(a) implies that
∼
Nψ(M) ≡

∼
Nψ(M ′′) ≡ 2 (mod 4),

where

M ′′ =
∏
j∈J

pi ≡ −1 (mod 24),

and J is the set of j for which rj = 1. Here M ′′ is square-free. Therefore J is a set of two
primes. Without loss of generality we may assume these two primes are p1 and p2 where(
p1
p2

)
= −ε(p2). Hence

24n− 1 = M = p4a1+1
1 p4a2+1

2 m2,
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where (m, p1p2) = 1 and 24n− 1 has the desired form.
Finally we assume

M = 24n− 1 = p4a+1
1 p4b+1

2 m2,

where p1 and p2 are primes such that

(
p1
p2

)
= −ε(p2). Arguing as before and using Lemma

4.12(ii),(iii) we have

Nψ(n) =
∼
Nψ(M) ≡

∼
Nψ(p1p2) (mod 4),

where M ≡ p1p2 ≡ −1 (mod 24). Since p1p2 is square-free, satisfies
(
p1
p2

)
= −ε(p2) and we

have proved the square-free case
∼
Nψ(p1p2) ≡ 2 (mod 4), the result

Nψ(n) ≡ 2 (mod 4)

follows. �

We are now ready to complete the proof of Conjecture 1.3 and related congruences for
ψ(q).

Theorem 4.14. Let p > 3 be a prime where p 6≡ 23 (mod 24). Suppose 24δp ≡ 1 (mod p2),

k, n ∈ Z and

(
k

p

)
= ε(p) where ε(p) = −1 if p ≡ ±5 (mod 24) and ε(p) = 1 otherwise.

Then

Nψ(p2n+ (pk + 1)δp) ≡ 0 (mod 4),(4.31)

spt(p2n+ (pk + 1)δp) ≡ 0 (mod 4).(4.32)

Remark. We have rewritten the statement of Conjecture 1.3 in an equivalent form. The
equivalence follows from the observations that

(
6
p

)
= 1 for p ≡ 1,±5 (mod 24) and

(
6
p

)
= −1

for p ≡ ±7,±11 (mod 24). We note that a weak version of the mod 4 congruences for Nψ(n)
were conjectured by Bryson, Ono Pitman and Rhoades [18, Eq.(1.7), Conjecture 1.6]. We
discuss this further in Section 4.3.

Proof. Assume p > 3 is prime, p 6≡ 23 (mod 24), 24δp ≡ 1 (mod p2), k, n ∈ Z and

(
k

p

)
=

ε(p). We let m = p2n+ (pk + 1)δp, so that

(4.33) 24m− 1 ≡ pk (mod p2).

By Theorem 4.3 we see that Nψ(m) is even since 24m−1 and p 6≡ 23 (mod 24). Now suppose
that Nψ(m) ≡ 2 (mod 4). By Theorem 4.13 Nψ(m) ≡ 2 (mod 4) if and only if 24m− 1 has
the form

24m− 1 = p1q4b+1t2,
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where q is a prime satisfying

(
p

q

)
= −ε(q) (pq, t) = 1, and b, t > 0 are integers. Either p or

q ≡ 1 (mod 4) so by quadratic reciprocity
(
q
p

)
=
(
p
q

)
= −ε(q). From (4.33) we have

k ≡ q4b+1t2 (mod p).

But this implies that (
q

p

)
=

(
k

p

)
= ε(q),

which is a contradiction. Hence Nψ(m) 6≡ 2 (mod 4) and

Nψ(m) ≡ 0 (mod 4),

which is (4.31). Finally the result (4.32) holds by (1.6). �

4.3. Strongly unimodal sequences. In this section we prove Bryson, Ono, Pitman and
Rhoades’s Conjecture 1.1. This conjecture has three parts. In this section we will prove the
first part, congruence (1.2). The third part, congruence (1.4), follows from Theorem 4.14.
The second part, congruence (1.3), will follow from the first and third parts. As noted in
Section 1 we have

(4.34) U(±i; q) = ψ(q) =
∞∑
n=1

Nψ(n)qn =
∞∑
n=1

qn
2

(q; q2)n
.

See [18, p.16064]. Also define U(q) by

(4.35) U(q) := U(1; q) =
∞∑
n=1

u(n)qn.

Letting z = i in (1.1) we have

(4.36) u(0, 4;n)− u(2, 4, n) = Nψ(n), and u(1, 4;n) = u(3, 4;n).

Hence

(4.37) u(n) = u(0, 4;n) + 2u(1, 4;n) + u(2, 4;n),

and

(4.38) u(n) +Nψ(n) = 2(u(0, 4;n) + u(1, 4;n)).

From (4.36) it is clear that (1.4) follows from Theorem 4.14. Equations (4.36)–(4.38) together
with Theorem 4.14 show how (1.3) follows from (1.2) and (1.4). Here we assume that

` ≡ 7, 11, 13, 17 (mod 24) is prime and

(
k

`

)
= −1.

We point out that there is a stronger result for Bryson, Ono, Pitman’s Conjecture (1.4)
that includes primes ` ≡ 1,±5 (mod 24). This follows easily from (4.31) and (4.36). We
state this as a separate theorem.



UNIMODAL MOD 4 CONJECTURES AND MOCK THETA FUNCTIONS 33

Theorem 4.15. Suppose ` > is prime and ` 6≡ 23 (mod 24). Then for n ≥ 0 we have

(4.39) u(0, 4; `2n+ kl − s(`)) ≡ u(2, 4; `2n+ kl − s(`)) (mod 4),

provided

(
k

`

)
=
∼
ε(`) and s(`) = 1

24
(`2 − 1).

Remark. Here
∼
ε(`) is defined in the statement of Conjecture 1.3; i.e.

∼
ε(`) = 1 if ` ≡ 1

(mod 24) and −1 otherwise. For example let ` = 457 ≡ 1 (mod 24), and k = 21. Then(
k
`

)
=
(
21
457

)
= 1 =

∼
ε(`), s(`) = 8702, and k`− s(`) = 895. We have

u(0, 4; 895) = 256203223294825619203431487908 ≡ 0 (mod 4)

u(1, 4; 895) = u(3, 4, 895) = 256203223294825426775345978961 ≡ 1 (mod 4)

u(2, 4; 895) = 256203223294825234347260470016 ≡ 0 (mod 4)

u(895) = 1024812893179301707101383915846 ≡ 2 (mod 4).

Hikami and Lovejoy [28, Theorem 4.1] found a Hecke-Rogers identity for the generating
function U(z; q);

(4.40) (1 + z)U(z; q) =
q

(q; q)∞

(∑
r,n≥0

−
∑
r,n<0

)
(−1)nz−rqn(3n+5)/2+2nr+r(r+3)/2.

See also [31, Eq.(1.3)]. Considering Lemma 4.4 and that ψ(q) = U(i; q) it is reasonable to
suspect that U(1; q) has a similar Hecke-Rogers identity.

Lemma 4.16. We have

(4.41) J1 U(q) =
∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n−r(r−1)/2(1 + q2n).

Proof. We define

Q(n, r) := n(3n+ 5)/2 + 2nr + r(r + 3)/2 + 1,

and

F(z; q) =
∞∑
r=0

∞∑
n=0

(−1)nz−rqQ(n,r).

Thus (4.40) can be rewritten as

(4.42) (1 + z)U(z; q) =
1

(q; q)∞

(
F(z; q) + zF(z−1; q)

)
,

since

Q(n, r) = Q(−n− 1,−r − 1).

We observe that

Q(n− 1, r − 2n+ 1) = r(r + 1)/2− n(n− 1)/2,
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so that

F(z; q) =
∞∑
n=1

∞∑
r=2n−1

(−1)n+1z2n−r−1qr(r+1)/2−n(n−1)/2.

Letting z = 1 in (4.42) we find that

J1U(q) = J1U(1; q) = F(1; q) =
∞∑
n=1

∞∑
r=2n−1

(−1)n+1qr(r+1)/2−n(n−1)/2

=
∞∑
r=1

b(r+1)/2c∑
n=1

(−1)n+1qr(r+1)/2−n(n−1)/2

=
∞∑
r=1

r∑
n=1

(−1)n+1
(
qr(2r+1)−n(n−1)/2 + qr(2r−1)−n(n−1)/2

)
,

by replacing r by 2r and 2r − 1 in the previous sum. The result (4.41) follows easily by
interchanging r and n. �

The proof of the next lemma, which contains our new Hecke-Rogers identity for U(q), is
analogous to that of Lemma 4.4.

Lemma 4.17. We have

(4.43)
J2
1

J2
U(q) =

∞∑
n=1

n∑
m=1−n

sg(m)(−1)n−1qn(3n−1)−2m
2+m(1 + q2n),

where sg(m) = 1 if m > 0 and sg(m) = −1 otherwise.

Proof. We define

Ak :=
∞∑
n=1

n∑
r=1

(−1)r+k−1q2n
2−n−(r−k)(r−k−1)/2(1 + q2n),

so that A0 = J1U(q) by Lemma 4.16. Using (1.10) and (4.8) we derive a recurrence relation
for Ak:

Ak + A−k − (Ak−1 + A1−k)

=
∞∑
n=1

n∑
r=1

(−1)r+k−1(q2n
2−n−(r−k)(r−k−1)/2 + q2n

2−n−(r+k)(r+k−1)/2)(1 + q2n)

−
∞∑
n=1

n∑
r=1

(−1)r+k(q2n
2−n−(r−k+1)(r−k)/2 + q2n

2−n−(r+k−1)(r+k−2)/2)(1 + q2n)

= (−1)k
∞∑
n=1

(q2n
2−n−k(k−1)/2 + q2n

2−n−k(k−1)/2)(1 + q2n)



UNIMODAL MOD 4 CONJECTURES AND MOCK THETA FUNCTIONS 35

− (−1)k
∞∑
n=1

(−1)n(q2n
2−n−(n−k)(n−k+1)/2 + q2n

2−n−(n+k)(n+k−1)/2)(1 + q2n)

= (−1)k

(
2

∞∑
n=−∞

q2n
2−n−k(k−1)/2 −

∞∑
n=−∞

(−1)nqn(3n+1)/2+n(1−k)−k(k−1)/2

−
∞∑

n=−∞

(−1)nqn(3n+1)/2+nk−k(k−1)/2

)

= 2
J2
2

J1
(−1)kq−k(k−1)/2 − J1ak.

where

a3r := q−6r
2+r,

a3r+1 := −q−6r2−r,

a3r+2 := q−6r
2−5r−1 − q−6r2−7r−2.

Therefore for k > 0 we have

(4.44) Ak + A−k = 2A0 + 2
J2
2

J1

k∑
r=1

(−1)rq−r(r−1)/2 − J1
k∑
r=1

ar.

We calculate the following sum two ways. By using (1.10) we have
∞∑

k=−∞

(−1)kAkq
k2 =

∞∑
k=−∞

∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n+k2−(r−k)(r−k−1)/2(1 + q2n)(4.45)

=
∞∑

k=−∞

∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n+(k+r)(k+r−1)/2−r(r−1)(1 + q2n)

=
∞∑

k=−∞

qk(k−1)/2
∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n−r(r−1)(1 + q2n)

= 2
J2
2

J1

∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n−r(r−1)(1 + q2n)

= 2
J2
2

J1

∞∑
n=−∞

|n|∑
r=1

(−1)r−1q2n
2−n−r(r−1).

This time we let
Q(n, r) = 2n2 − n− r(r − 1),

and observe that

Q(k − j, k − 2j) = k2 − 2j2 − j, Q(j − k, k − 2j + 1) = k2 − 2j2 + j.
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It follows that

∞∑
n=−∞

|n|∑
r=1

(−1)r−1q2n
2−n−r(r−1) =

∞∑
n=1

n∑
r=1

(−1)r−1q2n
2−n−r(r−1) +

−1∑
n=−∞

−n∑
r=1

(−1)r−1q2n
2−n−r(r−1)

=
∞∑
j=0

∞∑
k=2j+1

(−1)k+1qk
2−2j2−j +

∞∑
j=1

∞∑
k=2j

(−1)kqk
2−2j2+j

=
∞∑
m=1

∞∑
k=m

(−1)m+kqk
2−m(m−1)/2 =

∞∑
k=1

k∑
j=1

(−1)j+kqk
2−j(j−1)/2,

and from (4.45) we have

∞∑
k=−∞

(−1)kAkq
k2 = 2

J2
2

J1

∞∑
k=1

k∑
j=1

(−1)j+kqk
2−j(j−1)/2.

Next we calculate the sum on the left side of (4.45) using (4.44) and find that

(4.46)
∞∑

k=−∞

(−1)kAkq
k2 =

J2
1

J2
A0 − J1

∞∑
k=1

k∑
r=1

(−1)kqk
2

ar + 2
J2
2

J1

∞∑
k=1

k∑
r=1

(−1)r+kqk
2−r(r−1)/2.

By (4.45) and (4.46) we have

(4.47)
J2
1

J2
A0 = J1

∞∑
k=1

k∑
r=1

(−1)kqk
2

ar.

Next we proceed as in the proof of Lemma 4.9 and define analogous functions G(r, k) :=

(−1)kqk
2
ar and F (m,n) := sg(m)(−1)n−1qn(3n−1)−2m

2+m. The analogs of equations (4.15)–
(4.17) hold and we have

J2
1

J2
U(q) =

∞∑
k=1

k∑
r=1

(−1)kqk
2

ar =
∞∑
k=1

k∑
r=1

G(r, k) =
∞∑

n=−∞

|n|∑
m=1−|n|

F (m,n)(4.48)

=
∞∑
n=1

n∑
m=1−n

sg(m)(−1)n−1qn(3n−1)−2m
2+m(1 + q2n).

�

We are now ready to complete the proof of Conjecture 1.1.

Proof of congruence (1.2) in Conjecture 1.1. We need a result similar to Lemma 4.5. We
define

ε1(m,n) =
1

2

(
sg(m)(−1)n−1 − sg(n)(−1)m−1

)
.
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We note that ε1(m,n) only takes the values 0, ±1. Then by (4.43) and (4.9) we have

(4.49) U(q)− ψ(q) ≡ 2Du(q) (mod 4),

where

Du(q) :=
∞∑
n=1

du(n)qn :=
∞∑

n=−∞

∑
1−|n|≤m≤|n|

ε1(m,n)qn(3n−1)−m(2m−1).

The proof of (4.49) is completely analogous to that of Lemma 4.5.

We assume ` ≡ 7, 11, 13, 17 (mod 24) is prime and let n, k be integers where

(
k

`

)
= −1.

We suppose that

m = `2n+ kl − s(`),
and recall that s(`) = 1

24
(`2 − 1). Then

24m− 1 = `(`(24n− 1) + 24k) ≡ 24k` (mod `2).

Hence `‖24m − 1 and d0(m) = 0 by Corollary 4.7, since ` ≡ ±7,±11 (mod 24). We note
that

k`− s(`) ≡ (24k`+ 1)δ` (mod `2).

Therefore

Nψ(m) = Nψ(`2n+ k`− s(`)) ≡ 0 (mod 4)

by Theorem 4.14 since ` ≡ ±7,±11 (mod 24) and(
24k

`

)
=

(
6

`

)(
k

`

)
= 1 = ε(`).

Since d0(m) = 0 we have du(m) = 0 and by (4.49) we have

u(m) ≡ Nψ(m) + 2du(m) ≡ Nψ(m) (mod 4),

and

u(`2n+ kl − s(`)) = u(m) ≡ 0 (mod 4).

�

5. Conclusion

The main goal of this paper was to prove the mod 4 unimodal sequence conjectures of
Bryson, Ono, Pitman and Rhoades [18] and Kim, Lim and Lovejoy [31]. We also proved
a related mod 4 conjecture for the Andrews spt-function. The crucial part of the proofs
was the connection with the Hurwitz class number. Along the way we needed to study the
mod 4 behaviour of the coefficients of certain mock theta functions. As mentioned before,
the parity of these was determined very recently by Wang [42]. It would be interesting to
determine whether the methods of this paper can be used to extend Wang’s parity results
to mod 4 results for other mock theta functions.
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In this paper we have found a number new Hecke-Rogers identities (4.9), (4.43) and

(4.41) altuhec . Can these identities be proved using the Bailey pair machinery [4, Ch.3]?
What are the missing Bailey pairs?

Acknowledgments. We would like to thank Jonathan Bradley-Thrush, Chris Jennings-
Shaffer, Jeremy Lovejoy and Eric Mortenson for their comments and suggestions.
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