NEW SYMMETRIES FOR DYSON’S RANK FUNCTION
F. G. GARVAN AND RISHABH SARMA

ABSTRACT. At the 1987 Ramanujan Centenary meeting Dyson asked for a coherent group-
theoretical structure for Ramanujan’s mock theta functions analogous to Hecke’s theory of
modular forms. Many of Ramanujan’s mock theta functions can be written in terms of
R((p,q), where R(z,q) is the two-variable generating function of Dyson’s rank function
and ¢, is a primitive p-th root of unity. In his lost notebook Ramanujan gives the 5-dissection
of R((s,q). This result is related to Dyson’s famous rank conjecture which was proved by
Atkin and Swinnerton-Dyer. In 2016 the first author showed that there is an analogous re-
sult for the p-dissection of R((,, q) when p is any prime greater than 3, by extending work
of Bringmann and Ono, and Ahlgren and Treneer. It was also shown how the group I'; (p)
acts on the elements of the p-dissection of R((,, ¢). We extend this to the group I'y(p), thus
revealing new and surprising symmetries for Dyson’s rank function.

1. INTRODUCTION

Let p(n) denote the number of partitions of n. The following are Ramanujan’s famous
partition congruences:

p(bn+4) =0 (mod 5),
p(Tn+5)=0 (mod 7),
p(1ln+6) =0 (mod 11).

In 1944, Dyson [9] sought a simple combinatorial explanation for these congruences. He
defined the rank of a partition as the largest part minus the number of parts and conjectured
that the rank mod 5 divided the partitions of 5n + 4 into 5 equal classes and that the rank
mod 7 divided the partitions of 7n + 5 into 7 equal classes. His mod 5 and 7 rank conjectures
were proved by Atkin and Swinnerton-Dyer [4].

Let N (m,n) denote the number of partitions of n with rank m. We let R(z, ¢) denote the
two-variable generating function for the Dyson rank function so that

R(z,q) = Z Z N(m,n)z"q".

n=0 m

It is the symmetry of the rank function R(z,q), when z is a root of unity, that we study in
this paper. Many of Ramanujan’s mock theta functions can be written in such a form. For
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example, Ramanujan’s third order mock theta function f(q) can be written

n2

o q
jﬁ<q>_1+n§1(1—|—q)2(1—|—612)2---(1—|-q")2

= R(_17Q>‘

In fact, it was Dyson [10} p.20], who originally called for the study of such symmetry.

The mock theta-functions give us tantalizing hints of a grand synthesis still
to be discovered. Somehow it should be possible to build them into a coher-
ent group-theoretical structure, analogous to the structure of modular forms
which Hecke built around the old theta-functions of Jacobi. This remains a
challenge for the future.

Freeman Dyson, 1987
Ramanujan Centenary Conference

Many authors have taken up Dyson’s challenge. In this paper we extend the previous work
of Ahlgren and Treneer [1]], Bringmann and Ono (7] and the first author [13]].
We have the following identities for the rank generating function R(z, q):

(1.1) qu_1+z

A+ gM)(A =2) (1 =271 16,0
(1.2) = ( +Z 1_Zq =y g +>)

z7lq")
See [12, Egs (7.2), (7.6)].

Here and throughout this paper we use the standard g-notation:

(@;q)oe = [ [(1 = ag®),
_ (a; @)oo
(#0)n = (ag™; @)oo’

(ar,a2,...,45;¢) s = (@13 ¢)oo(a2; @)oo - - - (A3 q) 0,
(ar,as,...,a5;q)n = (a1;Q)n(a2; @)n - - - (a3 @)n-

Let N(r,t,n) denote the number of partitions of n with rank congruent to » mod ¢, and let
¢, = exp(2mi/p). Then

00 p—1
(1.3) R(Gprq) = Z (ZN (k,p,n c’f) g

k=0
Dyson’s rank conjectures may be restated

Dyson’s Rank Conjecture 1.1 (1944). For all nonnegative integers n,
(1.4) N(0,5,5n+4) = N(1,5,5n +4) = --- = N(4,5,5n+4) = ip(5n +4),
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(1.5) N(0,7,7n+5) = N(1,7,7n+5) = --- = N(6,7,7n + 5) = 1p(Tn +5).

As noted in [12], [L1], it can be shown that Dyson’s mod 5 rank conjecture (1.4) follows
from an identity in Ramanujan’s Lost Notebook [19, p.20], [2, Eq. (2.1.17)]. We let (5 be a
primitive 5th root of unity. Then the following is Ramanujan’s identity.

(1.6) R(G,q) =A@)+ (G + G =2)0(°) + g B(@®) + (G + G Cd°)

(GG {D<q5> @G- 2)‘“;5) } ,

where

(%, ) - (%50°) (%47 (4,4 )
Ala) = (¢, 4% )% Bla) = (¢, 4% ¢°)oo Clo) = Do) = (% ¢ ¢
and

2 2

:—1+Z :—1+Z

n+1q Q)

n—i—lq Q)

By multiplying by an appropriate power of ¢ and substituting ¢ = exp(27iz), we recognize
the functions A(q), B(q), C(q), D(q) as being modular forms. In fact, we can rewrite
Ramanujan’s identity (I.6) in terms of generalized eta-products:

= g H (1—¢") q = exp(2miz),

and

N
(1.7) v g(z) = g2 PN (1—q™),
m>0
m=+k (mod N)

where z € b, Py(t) = {t}* — {t} +  is the second periodic Bernoulli polynomial, and
{t} =t — |t] is the fractional part of ¢. Here as in Robins [20], 1 < N { k. We have

(1.8) ¢ 2 (R(Gyq) — (G + ¢ —2) 6(¢°) + (1 +2G +2¢) 472 9(”))

_ n(252) n52(52) N n(252) (G Y n(252) G+ ¢ 1n(252) n5.1(52)
5 5 2(52) 5 5 775,2(52’)2 .

N5.1(52)? 15,1(52)
Equation (1.6)), or equivalently (1.8)), give the 5-dissection of the ¢-series expansion of
R((5,q). We observe that the function on the right side of (1.8) is a weakly holomorphic
modular form (with multiplier) of weight $ on the group I'9(25) N T (5).

In [13]], the first author was able to generalize Ramanujan’s result (I.8) to all primes p > 3.
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Theorem 1.2 ([13, Theorem 1.2, p.202]). For p > 3 prime and 1 < a < %(p — 1) define

o0 2
g .
> , if 0 < 6a < p,
4% GP ) n+1(4P% QP )n

(1.9) D, a(q) =4 " ( s o qpnz)

D ), TP
and
(1.10)

(p—1

-1
_1 a [ 3a+3(pt+1 —3a—3(p+1
Ry (Gr2) i= 4 HR(Gra) = xa2(p) Y (—1)° (G0 4 gm0

a=1

N

G 3‘1_%”}_1)) 55 0, (),
where
19 1 ifn=+1 (mod 12),
(1.11) X12(n) == (—> =< -1 ifn=45 (mod 12),

n .
0 otherwise,

and q = exp(2miz) with 3(z) > 0. Then the function
77(1922) Ry (s 2)
is a weakly holomorphic modular form of weight 1 on the group T'y(p?) N T (p).

In [13], the first author also considered the modularity of each element of the p-dissection
of n(p?2) R, (¢, 2). For example, we have

Theorem 1.3 ([13| Corollary 1.3, p.202]). Let p > 3 be prime and s, = 5;(p* — 1). Then

the function

o] o) p—1

[Ja-¢ > ( N(k,p,pn — sp) C,’f) q"
n=1 n—= [%(SP)—I k=0

is a weakly holomorphic modular form of weight 1 on the group T'¢(p).

Remark. This result is an improvement of a theorem of Ahlgren and Treneer [1, Theorem
1.6, p.271].

In this paper we improve the previous results of the first author for the other elements of
the p-dissection. These elements feature the functions ICpﬁm(C;f, 2).

Definition 1.4. For p > 3 prime, 0 < m <p—1land1 < d < p— 1 define I, ,,,( g, z) as
follows :

(i) Form = 0 or (’2]'#) = —1 define

S) o r!
(112) ]Cimm(C;l,Z) — qm/p H(l_qpn> Z ( N(k;papn+m— Sp) C;fd) qn,

n=1 n:[ (Sp—m)—l k=0

B =
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1 (2

where 5, = 5:(p? — 1), and g = exp(2miz).
(i1) For (’24’”) = 1 define

p

(1.13)
00 00 p—1
o fin o § (Brsamen )
n=1 n— I'%(sp_m)"l k=0

o (dr\ . [(6adm\  iie(y_34)—m
— 4x12(p) (—=1)* sin <?> sin ( ) C]P(Z(p 3a) )qu,a(Q)),

p
where 1 < a < %(p — 1) has been chosen so that
—24m = (6a)*  (mod p).

In [13], the first author studied the action of the the group I'y(p) on K, ,,,(¢¥, 2) for d = 1
and obtained :

Theorem 1.5. [13, Theorem 6.3, p.234] Suppose p > 3 prime, 0 < m < p — 1. Then

(1) K,.0(G, 2) is a weakly holomorphic modular form of weight 1 on 'y (p).
(i) If1 <m < (p—1) then K, ,,((p, 2) is a weakly holomorphic modular form of weight
1L on U'(p). In particular,

(1.14) Kpm(Gpr 2) | [B], = exp (

2mwibm

) Ky 2),

for B = (Z Z) € I'i(p).

Remark. In equation (1.14) we have used the stroke operator notation defined in (2.14).

In [2] Entry 2.1.5, we have a 7 dissection of the ¢-series expansion of R((7, q). Rewriting
the equation in an equivalent form in terms of generalized eta-functions, we have

(1.15) ¢ 2 (R(C% )+ (G+E-2)ora(@)+ (G +E+G =) g draldh)

+ (142G + G+ ¢ +20) 7 drald)

o o\ 1(492) n73(72) | 1(49z) 6y 1(492) 72(72)
(110 = ( L+ <7>777,1(72) 777,2(72) 7]7,1(72) * (C7 " <7) 777,1(72) 777,3(72’)
2 5\ 1(49z) (2 5\ 1(492) _ 3 4y M(492) 971(72)
+(1+€7 +C7) 777,2(72) (C? +€7) ?713(72) <1+C7 _'_C?) 777,2(7'2) 7]7,3(72)'

Multiplying both sides by 7(49z) and letting ¢ — ¢7, we find the elements Kz .m(Cr, 2) of
the 7—dissection of 7(492) Rz ((,, ) in terms of generalized eta-products:
Kr0(¢r,2) =0,
(72)* n7a(2)
Kra(Gr2) = —(1+ G + i) DL RUE
7l 2) ( T ) m7,2(2) n7,3(2)
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K73(Gr,2) = Z:Z))
&A@a=w+@%%§%%7
(72)°

Kis(Gry2) = (14 G+ )

Kro(Gr2) = =G +¢7);

~—

The cases m = 1,2 and 4 correspond to when —24m is a quadratic residue modulo 7 and
m = 3,5 and 6 to when —24m is a quadratic non-residue modulo 7. We can clearly see
symmetry among between the eta-quotients of the quadratic residue cases and likewise of the
non-residue ones. We find that this behavior arises from the transformation of Ky, ,,(¢2, 2)

under matrices in I'g(p). This leads us to one of the main results of our paper :

Theorem 1.6. Suppose p > 3 prime, 0 < m<p—1,and1 <d <p—1. Then

1T Kpm(Gp2) |[A] = % (—1)*" exp (2”;"“’“) Ky (G2 2)

assuming 1 < a,d < (p— 1) and

A= (Z ’;) € To(p).

Sometimes it is convenient to rewrite the generalized eta-products in terms of some theta-
products of Biagioli.

Definition 1.7. Following Biagioli (see [6, Eq.(2.8),p.277]), define

(1.18) Fvp(z) = g2 BN (g0 g g N,
for N > 1 and N 1 p. We have corrected a misprint [6, p.277] and [13| Eq.(6.14),p.242].
Then, for a vector 7@ = (ng, ny,ng, - - - ,n%(p_l)) € Z:®+D)_ define
5(p—1)
(1.19) i(2) =i, 7, 2) =nlpz)™ [[ fowlz)™.
k=1
We note that

(1.20) Inp(2) = funp(2) = fn—p(2),
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and

(1.21) fnp(2) = n(Nz)nnp(2)-

We illustrate the theorem for p = 7, withm = 1 and A = (? i) € Io(7).

Using (I.21), we have

Kri(Cr,2) = —(1+E+¢) n(72)3 fr1(2)

fm(z) f7,3(2)'

Then, using the Biagioli transformation identity and the transformation for 7(z) in [13, The-
orems 6.12 & 6.14, p.243], we have

Kra (Grr2) [14], = —<1+<$+<7>% 14,
n(72)° fra(z) €7
(1+<7 +C7) f74( )f76(2> 68771'1' 618771'7,
n(7 ) fr2(2)
(1+C7 +C7)—f73( )f71(z) (by @)
= eXp (47; ) (1 +C7 +C7) % (by )'

It can be easily checked that 1 + 3 + (7 = 581?(47;/ /77) (¢? + ¢2). Therefore,

K71(¢r, 2) | [A]; = exp (477T ) (1+G+6G) %

_ sin(w/7) exp Ami o N(72) % mra(2)
S e () (¢ g ML

sin(47 /7 1(2) nr3(2)
sin(7/7) Ami
—m eXP( 7 ) ’C74(C77 z).

which agrees with the transformation in Theorem 1.6

Our other main result of the paper concerns the symmetry of the zeta-coefficients in the
identity for ICp,O((p, z) in terms of generalized eta-functions. In [13, Section 6.4, p.242], the
first author found that

(1.22)
5

oo 10
Ki10(Ci1,2) = (qn; qll)oo Z (Z N(k,11,11n —5) Cﬁ) q" = chl,k Jik(2),

n=1 \k=0 k=1
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where
n(11z2)* 1

7](2)2 7}11,4k(2> 7711,5k(2)2’

j11,k(2’) =
and
e =20+ 26 Tt 2600 2007+,
Cl12 = —(5119 +ef 2 a2t F G+ G+ 1),
cr13 =2 C118 +2 C117 +2 C114 +2 C113 + 3,
Cl14 = 400+ + 20" + 26 20 20t + G 4G+ 4,
C11,5 = —(Cllg +2¢n° - C117 +2¢n°+2¢° - C114 +2¢° + G + 3).

Our theorem reveals hidden symmetry in these coefficients. We find

ciip=1+2 (an + )+ 2+ )+ (Gt + C117) ;
Cl12 = —%(1 +2 (C114 + C117) + 2 (C115 + C116) + (Cu3 + Cng)),
sin(m/11)

C11,3 = —m(l +2 (Cll5 + C116) +2 (Cll2 + Cllg) + (G + Clllo))>

sin(7/11) 1

m(l +2(C° + C®) +2(Ca "+ ) + (G + ),
sin(r/11)
sin(5mw/11)

C114 =

C115 = — (L4+2(Cn +¢n") + 2" + ™) + (Ga® + ¢?).

We clearly see symmetry in these coefficients.

In general, our result implies certain symmetries for the coefficients in the identities for
Kpo(Cp, 2). These involve explicit modular forms in terms of the B1ag1011 theta functions
I,z ) defined in (I.18). In particular, they involve eta-quotients j(p, 77, z) defined in

The case m = 0 is quite special and leads us to our other major result. The exact form
of this result is given later in Theorem[5.1]

Theorem 1.8. Let p > 3 prime and the t vectors @, 1 < ¢ < tand j(2) be defined as in
Definition|[l.7} Suppose

1
t 3(-1)
pO <pa Z Z Cprt Cp p,?Tr(TL_z),Z),
r=1
where for 1 <r < (p — 1), m, is permutation on {1,2,-- - , 3(p — 1)} defined as 7, (i) =

where ri' = +i (mod p) and the functions j(p,n.(n}), z) are linearly independent (over



DYSON RANK FUNCTION SYMMETRIES 9

Q). Then

sin(7/p)

Cpre(Gp) = sin(rm/p)

’LU(T’, p)cp,1,€<€;)7

where w(r,p) = 1.

Example 1.9. We illustrate the theorem for p = 11. Here ¢ = 1. From we have

Mm

ICH() C11, C11,r,1 Cll 11 7Tr( 1) Z)

r=1
where

i1 = (15, -2, -2, -2, —3, —4),
ciip1(Cn) =142 (C112 + ) +2(G+®) + (Gt + C117) )

sin(r/11)

cir1(Cin) = sin(rr/11)

UJ(’I", 11)01171,1(C;)7 (1 S r S 5)7

w(l,11) =1, w(2,11)=-1, w(3,11)=-1, w(4,11)=1, w(5,11)=—1,
and

n(11z)* 1 n(112)1°

- —
j(H’ WT(m)’ 2) 77(2)2 7711,4r(2) 7711,57~(Z)2 fll,'r(z)2f11727"(2)2f11,37’(Z)2f11,47"(z)3f11,57‘(z)4.
The paper is organized as follows. In Section 2, we review transformation results for
theta functions and Maass forms. In Section 3, we give conditions for the modularity of the
generalized eta-quotients which are the building blocks for our expressions for K, (¢, 2)
needed in a later section. In Section 4, we state and prove our main result on the symmetry of
Dyson’s rank function. This involves generalizing many earlier transformation results in [[13]
and finding the transformation of /C, ,,,({,, z) under matrices in I's(p). In Section 5, we give
another symmetry result, more precisely the symmetry among the cyclotomic coefficients in
an expression for K, o((,, z) in terms of generalized eta-functions. Section 6 is devoted to
calculating lower bounds for the orders of /C, ,,,({,, z) at the cusps of I'; (p) which we utilize
to prove identities in the subsequent section. In Section 7, we give an algorithm that uses the
Valence formula for proving generalized eta-quotient identities for /I, ,,, (¢, 2). We illustrate
the algorithm in detail for p = 11. We give explicit identities for p = 11 and p = 13. For
p = 17 and p = 19 we only give the form of the identities.

2. PRELIMINARY DEFINITIONS AND RESULTS

In this section, we state the definitions and results from [13]], which we will be using in
the proof of our main theorem on the symmetry of Dyson’s rank function.
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2.1. Dyson’s rank function as a mock modular form. Following [7]] and [13]] we define
a number of functions. Suppose 0 < a < c are integers, and assume throughout that ¢ :=
exp(2miz). We define

o _1\nnt+2
i (%2) = LI V™" snen

_ gt
—. 1=

1 —2cos (22%) ¢" 4 ¢>"

(1 N i (=1)"(1+¢") (2 — 2cos (22)) q;n(gnﬂ)) |

n=1
We find that
o0 2 o0 3c
qcn qa (_1)nq7n(n+l)
(2.1) =14+ —
; (% 4%)n+1(¢°% ¢)n (4% ¢%) o n:z_:oo 1 — gente
=1+q¢*"M <g;cz) .
c
By (L.2) we have
a
22) Rt ) = N (%)
We also define
(2.3) N <g;z> = csc <@> g2 N (E;z) ,
c c c
2.4) M <2;2> = 2(135*2(17%)7i M (g;z> .
c c

2.2. Theta-function definitions. We state some results of Shimura [21]] needed to derive

a theta function identity which we use in the next subsection to relate two Maass forms of
b L

weight .

For integers 0 < k < N we define
E(k N;z) = i (Nm + k) exp 7T—Z.Z(Nerk)2 :
) ) e N
We note that this corresponds to #(z; k, N, N, P) in Shimura’s notation [21, Eq.(2.0), p.454]
(withn =1, v =1, and P(z) = x). For integers 0 < a,b < ¢ we define

6c—1 .
_9 -
O1(a,b,c;2) == P (" Z(—l)m sin <%(2m + 1)) exp (@) 0 (2me—6b+c, 12¢%; 2),

c2
m=0

and

2c—1 .
Os(a, b, c; z) == Z ((—1)4 exp (_Mb(fié + 1)> 0(6¢l + 6a + c, 12¢*; 2)

C

—7ib

+(=1)"exp ( (6 — 1)) 6(6cl + 6a — ¢, 12¢%; z)) .
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An easy calculation gives
(2.5)

[e.e]

ab -—a L(mn 1 b\ . /m —2mina
O1(a,b,c;z) = 6cCH ¢, n_z_oo(—l) <§ + = - E) sin <§(2n + 1)) exp ( )
" i n+ 1 b\?
ex miz| =+ - — - )
P 376 ¢
In addition we need to define

2.6) O <%;z) = i (—=1)"(6n + 1) sin (M) exp <3m (n + %)2> .

n=—0oo

(@)

This coincides with Bringmann and Ono’s function © (%, z) which is given in [7, Eq.(1.6),
p-423]. An easy calculation gives

6, (%;z) = —2%@2(0, —a, ¢ z).

Proposition 2.1. Let p > 3 be prime. Then

(1)

27N e (%z) = <—1)d%><12(p) > (=1)"sin (6“;”) 0,0, —a,p; ).

Proof. We consider two cases as in [[13, Theorem 5.1, p.225].

a=1

CASE 1. p=1 (mod 6). Let p; = %(p — 1) so that 6p; + 1 = p. We note that each integer
n satisfying 6n + 1 Z 0 (mod p) can be written uniquely as

(1) n=p2pm+46)+a+p, wherel <a< %(p—l),Ogﬁl < 2p,and m € Z,
or

(17) n=p(—2pm—4{;) —a+p;, wherel <a< %(p —1),1</¢; <2p,and m € Z.

If n = p(2pm + ¢1) + a + p1, then
6n + 1 = 12p*m + 2pl + 6a + p, where ¢/ = 3/; and 0 < ¢ < 6p,
d (6 1 d (12p? 2pl + 6 6ad
Sin<w> —sin(7T (12p7m + 2pC + a+p)> :sin( ¢ 7T—|—7Td>
b p p

= (~1)%sin (6apd7r> ,

3
sin (E(2£+ ]_)) = £7 (_1)” — (_1)€+a+p1'
3 2
If n = p(—2pm — ¢1) — a + py, then
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, (wd(6n+1)) , < 7rd(12p2m+2p€+6a+p)) . < 6adm )
sin| ——= ) =sin [ — =sin [ — —7d
p p p

o (—1)sin (6@d7r> |

p

| %

sin ($(20+1)) = =52, (=1)" = (-1,

Hence we have

o (g; z) _ f: (=1)"(6n + 1) sin (@) exp <3m'z (n 4 é)2>

n=—oo

6n+1#£0 (mod p)

= (-1)* (—1)4H9+1 gin (g(2€+ 1)) % sin (Gadw)

p

X Z (12p*m + 20p + 6a + p) exp <7;—w(12p2m + 20p + 6a + p)2>

m=—0Q

= (1) > (1) sin (6625“)

~

x 3 (~1)’sin (%(2@ + 1)) 0(20p + 6a + p, 12p%; =)

b6adm
p

) @l<0a —a,p;pzz),
since (—1)P* = x12(p).

CASE 2. p = —1 (mod 6). We proceed as in CASE 1 except this time we let p; = ¢(p+1)
so that 6p; — 1 = p, and we find that each integer n satisfying 6n + 1 £ 0 (mod p) can be
written uniquely as

(1) n=p2pm+/{)+a—p;, wherel <a< %(p—l),l </t <2p,andm € Z,
or

(17) n=p(=2pm—{)—a—p;, wherel <a<i(p—1),0<¢ <2p andm € Z.

The result (2.7) follows as in CASE 1. U

Remark : This result is a generalization of the d = 1 case given in [13, Proposition 6.8,
p-237].
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2.3. Maass-form definitions. Suppose 0 < a < cand 0 < b < c are integers where
(¢,6) = 1. Following [[13]], we define

2 exp (—37Tiz (¢ - %)2> if0 <2<,
(2.8) o (%:2) =40 itlcacd
2 exp (—37m'z (% — %)2> if% <2<,
. 200 @ g;
(2.9) T, (g; z) = M dr,
C \/g —z —Z(T + Z)
a i [ 0,0,—a,cT)
(2.10) T (-;z> L .
*\e 3¢ Jz  /—i(T+2)
Then the following identity follows from Proposition [2.1]
3(0—1)
d ? 6ad
(2.11) T (—;z) =2xn(p) Y (—1)**H! sm( a4 ”) T (9;p2z).
p — p p
We also define the following two Maass forms of weight %
(2.12) g1 (g;z> =N <2;z> - T (g;z> ,
c c c
(2.13) Gs (9;2,) =M (g;2> + &9 (g;z> —T (g;z> .
c c c c

2.4. Modular Transformations. For a function F'(z), we define the usual weight & stroke
operator

(2.14)  F|[A], = (ad —bc)"*(cz +d) " F(Az), for A= (‘CL Z) € GLI (Z),

where k € %Z, and when calculating (cz + d)~* we take the principal value. The follow-
ing theorem that concerns with the transformation of a Maass form under the congruence
subgroup I'g(p) is one of the main results in [[13].

Theorem 2.2 ([13, Theorem 4.1, p.218]). Let p > 3 be prime, suppose 1 < { < (p—1), and
define

(2.15) Fi <€;z> =n(z)G (Qz) :
p p

Then
(2.16) F <£z) | [A], = u(A,0) F (zz)
. 1 p, 1 — /1/ ) 1 p ) )
where j1(A, l) = exp (%#) (—1)% (—=1) %] ,and A = (CCL Z) € T'o(p)

Here T is the least nonnegative residue of m (mod p).
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It is well-known that the matrices

0 -1 11
=) =)
generate SLy(Z), and

(2.17) n(z) ‘ [T

D=

We define

(2.18) I (g,z) =1(2) Gy (Qz) .
p p

Then from (2.17)) and [13, Theorem 4.5, p.220], we have

0 0
(2.19) Fi (E;z) | [5], = (=0) 72 (Z—?;z),
and
( v (¢
(2.20) Fo (—;z+p) =G J2 <—;z) :
p P

where ¢/ = 2(p — 1)? (mod p).

These transformation identities (2.16)), (2.19), (2.20) will be useful when we examine the

transformation of /C, ,,, ( g, z) in the next section to derive our main result concerning the

symmetry of the rank function.

3. MODULARITY CONDITIONS FOR GENERALIZED ETA-QUOTIENTS

In [13], the first author gave an identity for /C, ((,, 2), for p = 11,13, in terms of gen-
eralized eta-functions defined in (I.7). The proof involves showing that both sides of the
identity are weakly holomorphic modular forms of weight 1 on the appropriate congruence
subgroup. In this section, we describe the conditions for a generalized eta-quotient to be a
weakly holomorphic modular form of weight 1 on I'(p). Then in a later section, we derive
and prove similar identities for /C,, ,,,((,, z), where p = 11,13,17and 19 and 0 < m < p—1.

We present a general criteria for an eta-quotient j(p, o, z) (see Definition to be a weakly
holomorphic modular form of weight 1 on I'(p) in the form of a theorem.

Theorem 3.1. Let p > 3 be prime and suppose 1 = (20,1, M9, - -+ M1, 1)) € 7,3 +D),

2
Then j(p, , z) is a weakly holomorphic modular form of weight 1 on I(p) satisfying the
modularity condition

o

=1

,2) [[A], = exp i(p, 7, z)

. 2mwibm
i(p, (=)
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for A = <(é Z) € I'y(p) provided the following conditions are met :

3(P—1)
n0+ Z nk—Q

3(p—1)

(2) Z k*ng =2m  (mod p),
k=1

3)ng+ 3 Z ny =0 (mod 24).

Proof. The Dedekind eta function is a modular form of weight 3. Thus, 7(pz)™ contrlbutes

no

% and each of the f,(z)™ contributes %+ to the weight and the weight of j(p, 77, z) is
3(p—1)
2
%0 4 37 %k Condition (1) implies that this weight is 1.
k=1

Let A = (CCL Z) € I'y1(p). Then, by [13, Theorem 6.14, p.243], we have

np2) | (Al = v A)n(p2),

where v, (P A) is the eta-multiplier,

= (C;Lp bg;) € SLy(Z).

We note the eta-multiplier v, is a 24th root of unity. Then

n(pAz) = v,(PA)Vez + dn(pz)

and using the Biagioli transformation [13, Theorem 6.12, p.243] for f, x(2), we have

miab

fp,k(z) [A]1/2 _ (_1)kb+Lka/pJ+Lk/pJ exp (7k2> Vs (pA) fp,ka(z)

miab
_ (_1)kb+Lka/PJ exp (TkQ) ”7?; (pA) fp,k(z),

assuming 1 < k < p — 1. Therefore
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where

k=1 = L P
3(p—1)
Ly(A) = > Kny,
k=1
3(p—1)
Lg(A) = Ny +3 Z N
k=1

Now assume conditions (1) — (3) hold, and (CCL b) € I'1(p). Since L3(A) =0 (mod 24),

d
. .. ; ab 2bm .
the modularity condition holds if we can show that L;(A) + —Ls(A) — —— is an even
p

) p
Integer.

We have that abLy(A) = 2bm (mod p) since Ly(A) = 2m (mod p) by (2). Thus Ly (A) +

b 2b
a—LQ(A) ~ s an integer. We show that L (A) + abLs(A) =0 (mod 2). This is suffi-
p b

cient to show that it is an even integer. Since b) € I'i(p), we have a = 1 (mod p) and

d
ka =k (mod p) so that ka = p L%J + k and {%J =k(a+ 1) (mod 2), since p is odd.

$(p—1)
Now, Li(A) = Z (bk + {%J )ng,
k=1

3(p-1)
=(a+b+1) Z kng (mod 2).

k=1

3(p—1) 3(p—1)
Li(A) +abLay(A) = (a+b+1) Z kny + ab Z k*ng  (mod 2)
k=1 k=1

1p-1

)
(a+1)(b+1) > knp=0 (mod 2),

which always holds since either a or b is odd.
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We also state a lemma which will be of use later.

Lemma 3.2. For a prime p,
3(p—1)

n(z) = n(pz)' 20 I fonl2)

Proof.

1 00
H 1 _ q _ (Ii_[H pn+k: ) H(l . qanrp)
n=1 k=1n=0 n=0
3(p—1)
= 1 @)@ 6" | (@507)

k=1

1(p-1) ) 1(p-1)

(qP; qP
— Foi( Mo Joo
H P (475 qP) oo

This gives the result.

O

Definition 3.3. Let F(m, p) be the set of functions j(p, 77, z) that satisfy the conditions of
Theorem [3.11
Definition 3.4. Let p > 3 be prime. For 1 < r S %(p — 1), we define a permutatlon
™ ¢ [5(p = D] = [5(p = D) where [5(p = 1)} = {1,2,--- , 5(p — 1)} by m, (i) = 7' where
ri’ = i (mod p).

7, induces a permutation on Zz®~Y. For 7 = (ng, ny,na, - - - ,n%(p_l)), 7.(7) permutes
the components to WT(W) = (10, N, (1), N (2), * ,nm(%(p_l))).

Lemma 3.5. Let p > 3 be prime and T and j(z) be defined as in Definition Then,
3(0—1)
i m(7),2) = n(p2)™ [ forr(2)
k=1

Proof. Biagioli’s transformation property gives fy, ,vn = fn—p = fn, [6, Lemma 2.1,
p-278]. Then

3(p=1)
i(p.m (1), 2) = n(pz)™ H Fon(2)rr®

1
2

(p—1)
H fprke (2)™ where rk’ =k (mod p)
k=1
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$(p—1)

=n(p2)" [ forr(z)™.

k=1

[l
Theorem 3.6. Let p > 3 be prime, 0 < m < p — 1. Suppose j(p, 7, z) € F(m,p). Let

A= (Z Z) €lo(p),1 <a,d<p-—1. Then,

5(p—1)

] =4 2miabm o n
G T2 (Al = (—1)HTeb exp( - )n(pZ) T forele)™,
k=1

where
1(p-1) 1p-1) ka
(3.2) L(7,a,b,p) =b(a+1) ank+z L Jnk
p
Also
(3.3) i(p,m (), 2) € F(m', p),

where 1 <r < 1(p— 1) and m’' = r*m (mod p).
Proof. Following the proof of Theorem (3.1, we use the transformation for 7(z) and f, ()
to get

miab
) 1AL = ()W esp (T

sl

Lo(4)) v (2 A) n(pz)™ H Fokalz

Since j(p, 17, z) € §(m, p), we have that LQ(A) = 2m (mod p)and L3(A) =0 (mod 24).
It suffices to prove that

pLy(A) + abLy(A) — pL(A) — 2abm

is an even multiple of p, where

L(A) = L(7,a,b,p) =b(a+1) an’“JrzvaJ
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Since Lo(A) = 2m (mod p) we have
pLi(A) + abLy(A) — pL(A) —2abm =0 (mod p).
Also

L(p-1) (p—-1) (p—1)

pLi(A) + abLo(A) =b > knp+ Y V“J ni+ab > Ky,

k=1 =1 LP k=1
(-1 20D
=b(l+a) Z kny + Z L—J ng  (mod 2)
k=1 =1 LP
=L(A) (mod 2),

as required. Equation (3.T)) follows.
Now suppose 1 < r < £(p — 1) so that for 1 < i < Z(p — 1) we have m,(i) = ¢’ where
1 <7 <i(p—1)andri' = =£i (mod p). We note that

3(0—1) $(p—1)
ng = Z N, (k) and
k=1
3(p-1) 3(p-1) 3(p-1)
anm k) = Z kEng = r? Z (k/)znk/ (mod p).
k=1 k=1
Equation follows easily. U

4. MAIN SYMMETRY RESULT

In this section, we give a proof of our main result illustrating the symmetry of Dyson’s
rank function. We restate the theorem :

Theorem 4.1. Suppose p > 3 prime, 0 < m <p—1land1 <d <p—1. Let le,m(Cg, z) be
as in Definition Then

Ky 2) 4], = ST (100 e (TR (68,2,

assuming 1 < a,d < (p—1)and A = (Z S) € Lo(p).

4.1. Reformulating the theorem. We need the following to write the theorem in an equiv-
alent form.

We assume p > 3 is prime, and define
4.1)

(2
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3(p—1)
d ? 6dl l l
=np*z) | N (—;z) — 2x12(p) Z (1) sin (—W) </\/l (—;p22) + &9 (—;p2z)> :
p o p p p

where Y12(n) is defined in (1.11)). Using (2.1, (2.2)) we deduce that
Proposition 4.2. Let p be a prime and R, ((,, z) be defined as in (m) Then

n(p*2) R, (¢, 2) = sin (%W) J (;—f;z> .

Proof. From (I.10) we find that

“4.2)
230D dm 6darm p?
1 a P
Ry (66:5) im0 (G )~ dxap) X (1) sin (90 ) in (207 g0s0Fr e, ()
p
a=1
forl1 <d<(p-—1).
Then
n(p*2) Ry (¢, 2)
F(p—1) )
. (dm\ . [(6dam\ 2. _a,_ P
=n(p?2) [ ¢ 2R, q) — 4xaa(p) Y (=1)“F sin (;) Sm< . ) 2072, ()
a=1

And from the definition of 7 (%; z) in li and from (2.4), we have

et () (4 (5 1 (32)

dm 6dam 2 a 1 a
4 P -1 a+d+1 sin (_) sin < ) <q3/2a(pa)p /24M (—;pQZ) + e (_;p22)>
xia(p) D (—1) p 25

a=1 p p

Define

43 ®,.(q) = .
#-) pl®) ;(qa;qp)nﬂ(q“;qp)n

2
PN
q
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Then
Bpalq”) = 1+ "M (%;p2z) :
which gives
¢2er=a) =124 (g;pQZ) — O/2p30)=p?/2 (%pﬂ(qp) _ 1) '
Also from (2.8]), we have

1o(a. ) _ qv/2P=30-7*/24if ) < 6a < p
272 p’p 0 if p<6a<5bp’

so that

a 1 a
g2ar=a) =24 (E;ﬁz) + 58 (E;ﬁz) = PO, (7).

Then we have
e
p p
a 2
=n(p*z) [ ¢ /N (g;Z) —4xi2(p) Y (1" sin (d—W) sin (&m) U, ()

=n(p*2) Ry (¢, 2) -

U

Definition 4.3. For p prime, we define the (weight k) Atkin U, operator by

124 z+7r i

kE_

(4.4) F | (U], ::—ZF( >=p2 D OFIT

p r=0 p n=0
where

1 r
T’I" - (0 p> )
and the more general U, ,,, defined by
4.5)
~1
2mirm Z+r E_ 2mirm

F | Wy, Zexp< ) r(EE) - Z p (-2 P

We note that U, = U, 0.

In addition, if F'(2) = > a(n)q" = >_ a(n) exp(2wizn), then

n

F | Upml, = qm/r Z a(pn +m)q" = exp(2mimz/p) Z a(pn +m) exp(2minz).

n n
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Combining Equation (4.2)) and Proposition 4.2} we have
Proposition 4.4. For p > 3 be a prime and 0 < m < p — 1 we have

. (d d
(4.6) Kp,m(C;l’Z) = s (%) J <§;z) | [Up,mly

where J (%; z) is defined in .

Next we define

“4.7)
d n(p?z) d 207 60dm 14

7 (%) =" 5 (%) “2valn X (e (M) 7 (5 )
p n(z) p — p p

We have

Proposition 4.5.

(4.8) J (C—i,Z> =J" (C—i,z) )
p p

Proof. Using the definitions in (2.13), (2.18)), (2.12) and (2.13)), we have

$(p—1)

d 64d 14
(}‘) ) — 2 x12(p) ; (— 1)£+d+1 sin (Tﬁ> G2 (]_)51722)

<N1<s )n(2)
s e ($2) s () o (52) 55

~2alp) 0 (0 s () (e (1i) e (152) ) | oy @Dy

p
O

Thus in view of (#.6) and (4.8) we have the following equivalent form of our main result
Theorem

Theorem 4.6. Let p > 3 be a prime and 0 < m < p — 1. Also, let1 < a,d < (p—1

¢ k) € Lo(p). Then with J (%; z) and J* (%; z> as defined in and

and A = (p d

respectively, we have
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4.9 * C_Z U Al = (—1 d+1 ~mak 7x C_l U
@9 T | [Upmly AL = (=) QT ks | Upmaz], -

4.2. Proof of Theorem 4.6, We recall from that

1

2 2(1’—1) ) ‘
J* (g,z) _ n(p*z) Fi <272) — 2x12(p) Z (_1)j+d+1 sin (%) 7 (j—);pgz) |

n(2) ‘= p

Assume 1 < a,d < (p—1)and A = (Z Z

operator and matrix A on F; <%; z) and F» <i—;; p2z> . We have the following.

) € I'y(p). We determine the action of the Atkin

Proposition 4.7. Let 1 < a,d < (p—1)and A = ( € Io(p). Then

a k
p d
n

ne) 5 (%;Z) | Wanly |[A], = (—1)yt1cmak éfgz;«“) 7 <g;z) | |V

17 a+pr (k+rd—r'(a+pr))
, <r<p- = = P
Proof. For0 <r <p—1letT, (0 p) ,and B, ( P d—r'p )

where 0 < 7/ < p — 1is chosen so that ' = rd® + dk (mod p). Then
T,A=B,T., r=1ra*—ak (modp), and B, cTy(p?).

We apply Theorem [2.2|and the well-known result that %z)z) is a modular function on I'g(p?)

(
n
when p > 3 1s prime. We have

777(7123) 3 (%;z) | Uy 1A, = %gc,;’“m"’;i? A (%;z) [T, 114],
_ %ng”g(’f 7 (5] 118, 15,

d—p'r‘,J

since (B, 1) = exp(32 (p?(d — pr')))(—1)P(~1)|F

p_2 (_1)d+7"+1—r’ _ (_1)d+1’
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2
Y

—rm —r'a?4a mak ~—mr'a
G = G = gnakg
and as r runs through a complete residue system mod p so does 7’. The result follows.  [J

Proposition 4.8. Ler 1 < ( < 1(p —1). Then

7 (L) 1 = {7 (5v°) (602 = —2am (moap

0 otherwise

¢
Fs (];;p22> ZC " Fy ( p2 +p7“>
o l
Z tF ]:2 (—;pz> .
p

The result follows since —rm + % (p — 1) = 0 (mod p) if and only if (6()> = —24m
(mod p). O

Lemma 4.9. Let p be a prime and 1 < (,{' < X(p — 1). Then

sin (%) — (_1)é’+aeﬂae/pj sin (Gé/dw) .
b D

Proof. CASE 1. /' = af (mod p).

Then al = p {%}J + ¢, so that al + {%J =/ (mod 2).
Also ¢'d = adl = ¢ (mod p), so that ¢'d = k'p + ¢, for some k' € Z.

Since ¢£dr d” = 6kt + 8= 6“ , we have

U /
(-Hzlﬂeﬂae/m sin (66 dﬂ) = sin (66 dﬁ) = sin (%) :
D p p

CASE2. (p— V') = al (mod p).

Then al = p {%}J + (p — '), so that al + {%J =/(+1 (mod 2).
Also ¢'d = —adl = —¢ (mod p), so that 'd = k"p + (p — {), for some k" € Z.

6ldr __ " 6Z7r
Since >=% = 6(k” + 1)m — 2F., we have

/ !
(— 1)€/+a£+\_a€/pj sin (66 dﬂ) = —sin (66 dw) = sin (Eilﬁ) .
p p p
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Proposition 4.10. Ler 1 < 0,0’ < 1(p—1),1 < a,d < (p—1) (60)? = —24m (mod p),
and (60')? = —24ma® (mod p). Also let A = (Z Z) € I'o(p). Then

(~1)’sin (6‘{) 3 (]f;p) | Uy, 11A], = (~1)" sin (“pd”) (rk (%p> |

Proof. Welet P = (p ¥

0 1) ,and find that S P A = B S P, where

B = (—ik‘ _al> e To(p).

From (2.19) we have F (f—;; z) =15 (ﬁ; z) | [S],. Then using this and Theorem [2.2| we
have

7 (ﬁ;pzz) | [Upl, |[A4], = F (sz) [ [Aly

b
iR (]f;) (], 11P) 1141,
iR (g) (B, 1), 1P,
i u(B.O T (g) (81, 117,

al
= M(Bag)‘FQ (?7132/) )

where (B, () = exp(—%akﬁ)(—l)“ﬂaf@. It can be shown that

and

Thus B

1)sin (S) 72 (Ste) | Wy 114] = 0fsin (25 ) s 7 (i)
= 1)'sin (B7) s 7 (D).

since ¢/ = +al (mod p).

It remains to show that

(4.10) (—1)"sin (%) w(B,0) = (—1)" sin <6€’d7r) (;”“k.
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In view of Lemma [.9| this is equivalent to showing
4.11) (_1)Z+a£+La€/p (B 6) Cmak~

Substituting for p(B, ¢), this is equivalent to

L(k+a e 2\ __ »~mak
(160D exp(—make?) = G
or  pl(k+a+1)—3kal®> =2mak (mod 2p).

Since —3¢* = 2m (mod p) we see that this congruence holds mod p. We also see that it
holds mod 2 trivially when ¢ is even, and holds when ¢ is odd, since (a, k) = 1 so that

kt+a+1l+ka=(k+1)(a+1)=0 (mod 2),

since either £ or a is odd.
We finally combine the above results to give the proof of (4.9) using the above results.

We consider two cases.

CASEl.m=0or (= 24m) — —1. In this case

(60)> 2 —24m (mod p), and (6¢)* # —24ma* (mod p),
for 1 < ¢,¢' < 3(p — 1). The result then follows from Propositionand Proposition

CASE 2. (_2;“”) = 1. In this case choose 1 < ¢, ¢' < 1(p — 1) such that
(60)> = —24m (mod p), and (6/')> = —24ma* (mod p).
We have

7 (;—f) | Wyly 114]

nf]z(oi;) 7 (]19; Z> — 2x12(p)

=,

— (- 1)d+1<;na’f%fl (g;z> | |V,
(=

—2x12(p

/‘\
\_/

= (-1 )d—i—lcmakn(p )]_-1 (C—i,z>
p

y 60'd A
— 2x12(p) (1) sin ( W) Qm“k T (p ) (by Proposition [.10)
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::(_1yulgrak<n@ﬂz>]a (g;z)

n(z) p

l\’)\)—l

(r—
675d ]
— 2x12(p Z 1774+ gin (ﬂ) Fo (j—j;p?z) ) ‘ [Up,ma2]; (by Proposition4.7)

— (- >d+1<m“'fj( )z| s

This completes the proof.
U

Theorem 4.11. Let p > 3 be prime, 0 < m < p — 1. Suppose there is a set B ofﬁ—vectors
such that {j(p, @, z) : @ € B} is linearly independent (over Q) and

Kpm(Cp, 2) = Z 0(77 ) J(p, 7, z),

weB
where the ¢(T, () € Q[ Then for1 < a < +(p — 1), we have

K — _ 1 L(7 ,a,b,p)+d (a+1) Sin(ﬂ-/p) a a —
P,maQ(vaz) ﬁZEB( ) Sin((lﬂ'/p) ( 7C ) (p,ﬂ' (n),z),
where 1 <d<p—1,ad =1 (mod p), and L(ﬁ), a, b, p) is defined in Equation .
Proof. From Theorem 1.6 we have

Ky () = ST et ey (2D 020 L

p,ma? sin(7/p)

where b is such that (Z Z) € I'y(p) orad =1 (mod p). Then using the previous theorem,
we get
sin(dr /p) d4+14L(T ,a,b — - —
Kymaz(G2) =Y — (—L) IR (77 ) j(p, ma(TT), 2)
p,ma p? » Sp s a 5
= 31n(7r/p)
G - 70 :
=D I (C) T (TG (p, ma(T), 2)
weB Cp - gp

Then, replacing ¢, by (7, and using the fact that ad = 1 + pb, we get

Ky (G ) = 3 (—1p SEDL (qyraorsas o5 ¢ j(p, 7y (), 2)

—~ sin(am/p)
sin(7/p) a ay
_ Z 1 pb DH\A/P) (_1)L( ,a,b,p)+d+1 C(ﬁ, Cp)j<p’ Wa(ﬁ)7 Z)
— sin(ar/p)

_ (_1)L(ﬁ>,a,b,p)+d+ad % c(ﬁ ¢ (. %(ﬁ)’ 2),
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which proves the theorem.
g

Corollary 4.12. Let p > 3 be prime. The identities for K, ,(,, z) in terms of generalized
eta functions are completely determined by three particular ones namely

Kpo(Cps 2)5 Kpmt (Cps 2), Kpm—(Gps 2),
where (—_Qiﬁ) =1, (—_24’"7) =—1

p

We present an example illustrating the theorem when p = 7. Equation (1.16]) gives the
7—dissection of R((7,q). We see that

K?,I(C%Z) - _(1 + C? + C?)](Z [37 17 _17 _1]72:)‘

LetW =[3,1,—1,-1], p=T,a=2b=1,d =4, ¢(7,{) = —(1+ G + ¢&).

Now,
L(7,a,b,p) = L([3,1,-1,-1],2,1,7) = —T,
sin(w/p)  sin(w/7)
sin(arw/p)  sin(27/7) L+G+ G
c(7,6) =c(38,1,-1,-1].¢) = —(1+ G + &)
and

,a,b,p)+a Sin(ﬂ-/p) ay ;
’C774(C7, Z) = ﬁ%g(—l)[/( a.bp)tatd m C(%)a Cp)](p7 Wa(ﬁ),Z)

=(1+G+¢) A+ G +¢) 4T, [3,-1,1,-1],2)
= (G +¢) (7,3, -1, 1, 1], 2),

which verifies that

n(72)% m72(2)

. 6
K74(Cr:2) = (G + (7) nea(z) nra(z)

5. SYMMETRY OF K, ((,, 2) COEFFICIENTS

Theorem 5.1. Let p > 3 be prime. Suppose there are t vectors 77{, 775, e ,ﬁi € Z3ptD
such that the set of functions j(p, Wr(rle),z), 1 <k <t1l<r<i(p—1)are linearly
independent (over Q) and

Kpo(Cpr 2) = ke (Cp) 7 (P 7Tr(77>k)a z),
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where ¢,k (y) € Q[¢). Thenfor1 <d < i(p—1), and T = (ng,n1,na, - - ,n%(p_l)), we
have
sin(7/p) d+1+L(7,d) d
et —]_ n,
Cp,d,k(Cp) sm(dw/p) ( ) Cp,l,k(§p)
where
5(p—1) 5(p—1)
dka dk
L(7,d) = L(7,a,b,d,p) = bd(1 +a kn + ({—J—{—{—J)n
(', d) = L( p) = bd(1+a) ; s ; p | )
and a,b are chosen so that A = <Z Z) e Do(p).
Proof. By Theorem [.1| (iii), for m = 0, we have
Kpa(Gre2) 4], = TP,y gt 2)
PEASP? L' sin(dn/p) pospo
where
a b
A= » d €elo(p),1 <a,d<p-1.
Now as in the proof of Theorem we deduce that for an arbitrary ﬁZ € {TT{ , 775, cee ﬁi}
say nj = (ng,n1,ng, - - - ,n%(p_l)), we have
a
L1(A)+_L2(A) ) )
i m (@), ) [[AL = (1) P CA) (i), 2),
where
3(-1) 3(p—1) ha 3(p—-1) ok
L) =br 3 kgt Y {_J ot Y H -
k=1 =1 L P k=1
3(-1)
Ly(A) = r? Z k*ny,
k=1
3(p—1)
Lg(A) =Ty +3 Z Nk
k=1
For m = 0, by Theorem 3.1} we have L3(A) =0 (mod 24) and
5(p—1) 3(p—1) ha 5(p—1) ok 5(p—1)
Li(A) + abLy(A) = br > knp+ Y {—J ny, + {—J g+ abr® > Ky
k=1 = L P =1 LP k=1
3(p-1) 3(p—1)

= br(1 +a) kz:; kg + ) (V%J + L%J)nk (mod 2).

k=1
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Therefore )
5(—1)
i, m(17),2) | [A]y = (=1 W j(p, ma(7), 2), where Ly g(A) = br(1+a) Y kng+
k=1
3(p—1) . i
e + \‘T—J >nk
Z ()13
Using the transformation above, we have
3(p—1) 3(p—1)
. — . —
Z Cp,r,ﬁ(gp)] (p> Wr(né)v Z) ’ [A]l = Z Cp,T,K(Cp)(_l)LT’Z(A) ](pa Wra(nf)a Z)
r=1 r=1
Since ad = 1(mod p), taking r — dr we have
3(—1) 3(—1)
> e (DD (T (7). 2) = D Cpane(G) (=1 G, (), 2).
r=1 r=1

Thus, comparing the coefficients with C,, (¢S, 2), we have

Cp,r,f(g;l) = % (_1)d+1cp,dr,£(<p)(_1)Ldr’e(A)
or ¢pae((y) = % (_1)d+1+Ld,e(A)cp717£<<’g).

6. LOWER BOUNDS FOR ORDER OF AT CUSPS

In this section, we calculate lower bounds for the orders of K, ,,((,, z) at the cusps of
I';(p), which we use in proving the /C, ., ((,, ) identities in the subsequent section.

Theorem 6.1. Let p > 3 be a prime and 0 < m < p — 1. Then
(1)
>0 ifp=>5,T7,

d(Kpm(Cps 2); - ,
(G 2) 0){: - 5)p—T) ifp>T

L [= 20— ) -n)te+D) —n) F2<n<ip-1)
>0 otherwise;
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(ii1)
L(p?—1) ifm=0or (Z2m) =1,
p

3 otherwise.

Proof. We define

o ()2

By Definition[I.4]and Proposition §.5] we have,

. T Iy .
Kpm(Cp, 2) = sin (E) J <5, 1) ‘ [Up,ml,

::ﬁn(%>[%%gifi(%ﬂ)‘—QXm@)

sin (%) Fi (ﬁ;?«’) | [Upm]y »if m = 0or (21) = —1,

—24
where 1 < ¢ < 1(p—1),(60)> = —24m (mod p), when (_m) =1

Therefore

Icp,m(gmz)
sin(3) b ¢, Y (%;z) | [T%], ,if m =0 or (—_2;”") =—1,

p

=) s e (4) 11T,
—2x12(p) (—=1)¢sin (;{) sin <%> Fa (ﬁ;pz) , if (ﬂ) =1.

p

We consider /C,, ,,,((,, 2) | [A], and evaluate the order of K, ,,,((,; #) at the cusps considering
suitable A € SLy(Z).

Order of F; (;1); z) | [T A], at the cusps is calculated in [13, Theorem 6.9, p.237-238] as
0 if k£ 0,

Ordnoio (S (%; Z;k> ;0) =41 iftk=0,p=>,
(=5 (-7 ifk=0p>5
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=0 if nk # —1(mod p),
ordhoto(F (%; Z;'f) H=BAp -1 -n)ip+1) —n) ifnk=—1(modp),2 <n
>0 if nk = —1(mod p), 2=+ <

1. z+k).ny _ p2—1
Ordholo(JT_.ik (Ea Zp > 7%) T 24p

We now look at F (ﬁ; pz> | [A], and subsequent lower bounds of order at the cusps.

Now, as in [13], we examine each cusp ¢ of I';(p). We choose A = (Z 2) € SLy(Z)

so that A(co) = ¢ = (. Also, let P = (g (1))

H(=0=a=0c=1 LetS = ((1) _01) = S(0c0) = 0 = (. Then, using [13]
Theorem 4.5, p.220], we have

7 (5ive) 1181, -7 (5] 1isu 1Pl |[S]1=§§f1 (=) () _()p)]l

Therefore

14 1 14
Ordholo(fQ (‘5]72) 30) = _-Ordholo(Fl (‘? Z) ;OO> =
p p p

1 k
By considering 0<r]£1<in ) ordpolo (.7:1* (—; et ) ; O) , we have
sk=p— p D

>0 ifp=>5,7,
ord(KC, 1 ((py 2);0) < — .
(i) = 2,2<n<5(p—1). Let A = (711 ?) = A(oc) = = = (. Then, using

[13} Theorem 4.5, p.220], we have,

ACTIINE v i (52 11l 1P 11, =
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—n

nk'—1 /
where C' = ( ) —pk:’ ) N = ((1) I;), and £’ is chosen so that nk’ = 1 (mod p) and
C € To(p).

Then, using [13, Theorem 4.1, p.218], we have

Fo (ﬁ;p2> |[A], = %M(C,é)ﬂ (_Wﬂ) [ [V

p

where 1(C, () = exp(—%k’ﬁ)(—1)”“’”/’”. Therefore

l 1 1 —k'l
Ordholo(f"Q (‘3]72) ;—) = —.ordholo(]-"l ( ;z) ;oo) =0.
p p p

n

By considering ming<y<p—1 0rdpolo ( Fi < %; z;k) : % )’ we have
ord(lcpm(gp,z);_){ (=1 —n)(Glp+1) —n) if2<n<gp-1),
n

>0 otherwise.

d> € SLy(Z), and

I
o~

We have seen in the proof of Proposition 4.10|that when A = (Z Z) € I'o(p), then

7 (f;pz) |[A], = u(B, ) F, (@;Z) [[Ply

b p
where
p 0 d -1 3mi 7.2 ke+|at/p]
P = 0 1) B = ok a €To(p) and p(B,() = exp(—=Ttakl”)(-1) :
Therefore
14 n nt
ordpolo(F2 | =3 pz | 5 =) = p.ordpolo(Fa | —; 2 ) ;00)
p p p
ol 30 if1<nl<e
= %ﬂ_lS(gﬁ)Q if%gﬂ<%,
%m——?’(;ﬁ)Q —p if% <nl < p.
By a calculation, ordpo (F2 (ﬁ;pz) ; %) > % — 2%.

It follows that ord(KCp, 1 (Gp, 2); 3) 2 {
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7. RANK MOD p IDENTITIES FOR p = 11,13,17 AND 19

In this section, we find and prove identities for /C,, ,,((,, 2) when p = 11,13,17 and 19 in
terms of generalized eta-functions defined in (I.7). Identities of this kind were first studied
by Atkin and Hussain [3]] for rank mod 11. Rank mod 13 identities were subsequently con-
sidered by O’Brien in his thesis [[17]. The identities for p = 17 and 19 are new. In general,
these identities are of the form

(71) pm Cpa Zcpmk]pmk

where j, . 1(2) are quotients of generalized eta-functions, and the ¢, ,, s are cyclotomic in-
tegers.

In the first part of this section we describe an algorithm for proving identities of this type
using the Valence Formula (Theorem [7.1] below). By Theorem {.11] (and noted in Corollary
, for each p we need only give identities for three particular cases of —24m (mod p),
corresponding to 0, a quadratic residue and a quadratic non-residue mod p.

In Section|/.1)we give detail of the algorithm for the case p = 11. In Section|/.2{we list the
three 1dent1tles for p = 13 but omit detail of the algorithm. In Sections[7.3]and [7.4] - we only
give the form of the identities for p = 17 and p = 19 omitting the values of the coefficients.

From Theorem we know that /C,, ,,,((,, 2) is a weakly holomorphic modular form of
weight 1 on ['(p). The proof of the identities primarily involves establishing the equality
using the Valence formula and showing that the RHS is also a weakly holomorphic modular
form of weight 1 on I'(p). To that end we first state here the Valence Formula.

Theorem 7.1 (The Valence Formula [18] (p.98)). Let f # 0 be a modular form of weight k
with respect to a subgroup T of finite index in T'(1) = SLy(Z). Then

1
(7.2) ORD(f.T) = pk,

where |1 is index T in F/(T),
ORD(f,T):= > ORD(f.(,T),

(eR*

R* is a fundamental region for I, and

(7.3) ORD(f; G T') = n(T; ¢) ord(f; C),
for a cusp ¢ and n(T'; () denotes the fan width of the cusp ( (mod I).

Remark. For ( € h, ORD(f;(;T') is defined in terms of the invariant order ord( f; (), which
is interpreted in the usual sense. See [18, p.91] for details of this and the notation used.

An Algorithm for Proving Rank Mod p Identities. We describe an algorithm for proving
rank mod p identities that utilizes the Valence Formula. We apply this algorithm with the aid
of the MAPLE packages THETAIDS and ETA developed by the first author.

We note that in the actual identities deduced and proved in the subsequent subsection, we
write them in terms of the permutation 7, and the generalized eta-functions j(p, 7, (7), 2)
defined as in Definition and In our algorithm, we write K, ,,,((,, z) in terms of
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generalized eta functions j,, ,,, », written in a general sense as in (7.1)), where the sum is finite
and the coefficients c, ,, , are nonzero.

Step 1. Use Theorem to check the three modularity conditions for each j, ,, x(2), 1 <
k < r in the RHS of the expression (7.1). This shows that the RHS of is a
weakly holomorphic modular form of weight 1 on I'(p) satisfying the same modu-
larity condition as K, ,,,(¢,, 2) in Theorem|1.5

Calculate orders at 00 of each generalized eta quotient j,, , k.

Step 2. For the cases when m # 0, convert the eta quotients to weight 0 by dividing each by
the eta quotient having the lowest order at ioco i.e. choose k& = kj such that

ORD(jp,m,ko (Z), iOO, 1—‘1 (p)) = 11’<nki£lr ORD(jp,m,k<Z>7 Z'OO7 F1 (p))
Let jo = Jpm.ko (2). Then (7.1) has the following equivalent form :

(7.4) Ky 2) _ S Jpank(2)

Jo o1 Jo

We note that the LHS and each term on the RHS is a modular function on I'y(p).
When m = 0, we skip this step.

Step 3. Ateach cusp s € S, given in Proposition calculate
ORD (jp,m,k(z)a 87 Pl(p)) When m = 0’

Jo
for 1 < k < r, using Proposition (7.4
Step 4. At each cusp s, calculate the lower bound \(p, m, s) of
ORD (Icp,m<<pvz)7svrl<p)) when m = 07

ORD (M, s,Fl(p)> when m # 0.
Jo

using Theorem|[6.1] We note that value is an integer.
Step 5. Calculate

ORD (M s, Fl(p)> when m # 0.

(7.5)
Y>> min ({ORD (jpmi(2),s,T1(p)) : 1 <k <r}uU{A(lp,m,s)}), ifm=0
B— sESp,s#i00 .
> min ({ORD (””}%, s,I‘l(p)> 1<k< r} U {A(p,m,s)}) , ifm#0
SES), 57100
Step 6. Show
ORD(LHS — RHS of ,ioo, Ti(p)) > —B+1+ % ifm =0,

ORD(LHS — RHS of (T4),ic0,[1(p)) > —B + 1if m # 0.
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Here
L,
(7.6) p= 5(19 - 1),

which is index of of @ in F/(T) See [16, Thm.4.2.5, p.106]. Then the Valence
formula in Theorem [7.1implies LHS=RHS and (7.1) is proved.
To aid with the calculations we include some propositions on cusps and orders at cusps.
From [88, Corollary 4, p.930] and [8, Lemma 3, p.929] we have
Proposition 7.2. Let p > 3 be prime. Then we have the following set of inequivalent cusps

S, for I'y(p) and their corresponding fan widths.

1
- j 11 1 2 3 a1
Cusp:. 100, 0, 3, 3, -y %(p—1)7 S o . PR
Fan width: 1, p, p, p, ..., D, 1, 1, ..., 1.

From [[14} Prop.2.1, p.34] and [6, Lemma 3.2, p.285] we have

Proposition 7.3. Let 1 < N { p, and (a,c) = 1. Then

a g® [ap ap 1\?
ord (1,20, 2) = 2 (2= | 22| - 1)

and
a) g

where g = (N, ¢).
Remark. We have corrected an error in the statement of [13, Prop.6.13].

The following proposition follows easily from (7.3) and Propositions [7.2] and
2 is one of the cusps listed in

Proposition 7.4. Let p > 3 be prime and suppose s
Propositionwith 100 represented by %. Then

(i) If (c,p) = 1 then
(h-1)/2

1
. —
ORD(](]% naz)asvrl(p)):ﬂ n0+3 Z n;

J=1

(1) If c = p then

) (p—1)/2 0 aj 1\ 2
ORD (j(p, 7 T(p) = of 12 \p Lp] 2
(.7, 2),8,T1(p) = o Mo+ - nj(p L}J 2)

j=

7.1. Rank mod 11 identities.
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7.1.1. Identtty for ICi1. Let the permutation 7, and the generalized eta function j(z) =
j(p, 17, 2) be defined as in Definition [3.4] n and (1.7, . We follow the steps of the stated algo-
rithm in the process of proving the following identity for K4 (11, 2) :

(77) ICll,O(Cllaz) = Z (ZN ]C ].1 11n )Cfl) q

n=1 —

5

== chl,rj(llaﬂr(m>7z)a

r=1
where
= (15,—4,-2,-3,—-2,-2),

and the coefficients are :

C11,1 = —(Ch+ T 2¢H F G+ 26 G G+,
011,2:4@1"’Cfl+2C171+2<161+2C151+2Ci11+C§1+4<121+47
C11,3 = —Ch —2Ch +Ch - 260 —2¢h + Gh 28 — ¢h - 3,
011,4:2<f1+2C171+2Cf1+26f1+37

iy =200 + 20 F ¢ G 20 20 + L

We note that a different but similar identity for K11 ¢(C11, 2) was found previously by the first
author [[13} Section 6.4].

Step 1 We check the conditions for modularity as in Theorem [3.1] for j(11, ,(77), 2),1 <
r < 5 involved in (7.7). Here, p = 11,m = 0,ny = 15. By Theorem [3.6] we only
need to check modularity for » = 1. With 77{ = (15,—4,—-2,—-3, -2, —2), we easily

see that
5
ng + Z ng = 2,
k=1

5
no + 3an =-24=0 (mod 24),
k=1
5
> Knmp=-143=0 (mod 11),
k=1

as required.

Since m = 0, we skip Step 2.
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Step 3 Using Proposition (7.4, we calculate the orders of each of the five functions f at each
cusp s of I'1(11).

ORD(f,s,I'1(11))

cusp s

f ico 0 1/n 2/11 3/11 4/11 5/11
j(1l,m(}),z) 1 -1 —1 2 2 2 3
(11, m(n}),z) 2 -1 —1 2 3 2 1
j(11,m3(ny),z) 2 -1 —1 3 2 1 2
j(11,m(ny),z) 2 -1 —1 2 1 3 2
j(11,m(ny),z) 3 -1 —1 1 2 2 2

where 2 < n < 5.
Step 4 Considering the LHS of equation ((7.7) we now calculate lower bounds A(11,0, s) of
the orders ORD (/C11,0((11, 2), s, '1(11)) for the cusps s of I'1(11).

cusps A(11,0,s)

0 -1
1/n 0
2/11 [5/11] =1
3/11 [5/11] =1
411 [5/11] =1

5/11 [5/11] =1

where 2 < n < 5, using Theorem|[6.1] Again we note that each value is an integer.
Step 5 We summarize the calculations in Steps 4 and 5 in a Table. The gives lower bounds
for the LHS and RHS of equation ([7.7) at the cusps s.

cusp( ORD(LHS;¢) ORD(RHS;¢) ORD(LHS — RHS;()

100
0 > —1 > —1 > —1

1/n >0 > —1 > —1

2/11 >1 1 >1

3/11 >1 1 >1

4/11 >1 1 >1

5/11 >1 1 >1
where 2 < n < 5. The constant B (in equation (7.5))) is the sum of the lower bounds
in the last column, so that B = —1.

Step 6 The LHS and RHS are weakly holomorphic modular forms of weight 1 on I';(11).
So in the Valence Formula, ’f’; = 5. The result follows provided we can show that

ORD(LHS — RHS,i0c0,I'1(11)) > 7. This is easily verified using MAPLE.

7.1.2. A quadratic residue case. We follow the steps of the stated algorithm in the process
of proving the following identity for 1 1 (11, 2) :
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(7.8)
Ki11(Ci, 2 )—q%(q g (Z (ZN (k,11,11n — )Cn)
n=1 k=0
+ (G1 + (' — ¢’ - C112) q_lq)11,5(Q))
~ fus(z (11 f11,4(2) dsr (11, (T, 2),
f111 chlr] y Ty nl) ) f115 Z Z 11r] m(m) z
where

ny = (15, —4, -2, -3, -2, —2),
and the coefficients are :

ci1 =0,

Ci12 = 5C?1+Cf1 +4C171+QC?1 +2Cir)1+4<i11 +C§1+55121 + 5,

C11,3 = —(5@1 + 3(171 + 2C161 + 2(?1 + 3&1 + 55121 +1),

Cl14 = C% - <§1 - C171 - Gl1 - Ci + +C121 -2,

cins = —(6¢ + 2 + 3¢ +5C +5¢ +3¢ + 26 + 6 +5),

dll,l = 07
dll,? - 07
dius =+ G+ + G+ G+ G+,
d11,4 =0.

dis=—-QO+G+G+H G+ G +HE 26+ 1),

Step 1 We check the conditions for modularity as in Theo for f“—58 j(11, (7)), 2)
(

and f“gg 33(11 7r,,(771>) z),1 < r < 5involved in . Here,p=11,m =1,ng =



40 F. G. GARVAN AND RISHABH SARMA

ot

generalized eta-functions ny ny ng ng  Ns g k*ny,.

k=1
RS0y @l 4 2 2 4 1 119
Qi’?g;j(nv”l(ﬁ)@ -2 -3 —4 —-1 -3 141
ﬁi’:g;j(llaﬂﬁﬁi)az) -2 -2 -2 -2 -5 —185
> 5
For each of the generalized eta-functions, we can see that Z k*ng =2 (mod 11), Z ng =
k=1 k=1

5 5
—13. Thus, ng + Z n, = 2, and, ng + 3 Z n, = —24.

k=1 k=1
Step 2 Next, we calculate the orders of the generalized eta-functions at 700 and considering

the identity with zero coefficients removed, we find that £y = 1. Thus we divide each
generalized eta-function by j, = fci—fgz; 4(11,m5(n}), ), which has the lowest order

at 100.
Step 3 Using Proposition [7.4] we calculate the orders of each of the six functions f at each
cusp s of I (11).

ORD(f, s, I'1(11))

cusp s

f ico 0 1/n 2/11 3/11 4/11 5/11

s i1 m@))fje 1 0 0 0 1 0 -2
hsls i1 m(@l),2)/je 1 0 0 1 0 -1 -1
ﬁifgﬂ'(ﬂ»m(ﬂ)),@/jo I 0 0 0 -1 1 1
Ml m@) ) e 2 0 0 -1 0 0 -1
Mm@, 2 0 0 0 1 -2 -
RGOt ), ) 3 0 0 -2 1 -1 -1

where 2 < n < 5.
Step 4 Considering the LHS of equation (7.8) after division by jj, we now calculate lower

bounds A(11, 1, s) of the orders ORD <W, ¢, F1(11)> for the cusps s of I'; (11).
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cusp s A(11,1,0)
100
0 0
1/n 1
2/11 —2

3/11 [-16/11] = —1
4/11 [-23/11] = -2
5/11  [—32/11] — 2

41

where 2 < n < 5, using Theorem@ Again we note that each value is an integer.
Step 5 We summarize the calculations in Steps 4 and 5 in a Table. The gives lower bounds
for the LHS and RHS of equation (7.8) after division by j, at the cusps s.

cusps ORD(LHS;s) ORD(RHS;s) ORD(LHS — RHS;s)

100
0
1/n
2/11
3/11
4/11
5/11

>0
>0
9
~1
9
9

)

'\|/ |\|/ '\l/ '\l/ IV IV
N DN DN

'|V ||v 'lv '\l/ IV IV
l\D[\D)—‘[\DOO

where 2 < n < 5. The constant B (in equation (7.5)) is the sum of the lower bounds
in the last column, so that B = —7.
Step 6 This time the LHS and RHS are weakly holomorphic modular forms of weight 0 on
I';(11). So in the Valence Formula, ’f—’; = 0. The result follows provided we can show
that ORD(LH S — RHS,ioc0,I'1(11)) > 8. This is easily verified using MAPLE.

7.1.3. A quadratic non-residue case. We follow the steps of the stated algorithm in the pro-
cess of proving the following identity for /Cy 2((11, 2)

(7.9)

’C11,2(C1172) = qll(q q

n=1 k=0

i(ZN (k,11,11n — 3) ¢k,

_ fua(2) ch (11, m (), 2) + 112212 dey (11,7 (), 2),

f11 1(2’

where

f114 Z

m = (15,—4,-2,—3,-2,-2),

and the coefficients are :

C11,1 = 0;

C112 = _(4@1 +2(§1+3C171 +3C161+3<f1 +3Gl1 +2C§1+4C121 +6),

C11,3 = -2 Ci + 5171 -

G — G+ Ch — 26— 1,
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ciia =3¢ + 3¢ + ¢+ 260 + 280 + ¢ +3¢ + 3¢ +6,
Ci15 = —(G)l + C?l + C171 + Cfl + <131 + C121)7

dll,l = 07

dio =+ Ch+ G+ + 1
d11,3 = 07

dia = —(Ch +Ch + G + G +2),
d11,5 =0.

Step 1 We check the conditions for modularity as in Theorem [3.1|for jﬁﬁ—‘l‘gzg j(11, m.(n}), 2)
9

ellnd }cﬂjg;j(ll,m(ﬁ),z),l < r < 5involved in (7.9). Here,p = 11,m = 2,ng =

generalized eta-functions ny ny n3z ng  Ns 5 k*n,.

Pdsj(i, m()),2) -3 —4 —2 —1 -3  —128
;i?gz;j(llaﬂi’)(ﬁl})az) -3 -3 —4 -1 -2 —117
;ﬁfgz;j(nﬁﬂdﬁi)vz) —4 -2 -2 -3 =2 198
;E:?Egj(llﬂ%(ﬁl))ﬂ) -3 -2 -2 -2 -4 —161
a1, m(nl),z) -2 —4 -1 =3 -3 —150
;ﬁjg;j(lLﬁ('fT{)?z) -3 -2 -1 -5 =2 —150
5 5
For each of the generalized eta-functions, we can see that Z k*nj =4 (mod 11), Z -
k=1 k=1

5 5
—13. Thus, ng + Z n, = 2, and, no + 3 Z ng = —24.
k=1 k=1
Step 2 Next, we calculate the orders of the generalized eta-functions at 700 and considering

the identity with zero coefficients removed, we find that ky = 1. Thus we divide each
generalized eta-function by j, = ;11‘118 j(11, (1), 2), which has the lowest order
at 200.

Step 3 Using Proposition we calculate the orders of each of the six functions f at each
cusp s of I'1(11).

ORD(f, s, T'1(11))
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cusp $

f ico 0 1/n 2/11 3/11 4/11 5/11

Bl i1, (), 2) /o 1 0 0 0 10 -9
Mm@ 10 0 1 0 1 -
§11ZTE§§J(117W4(771>)72)/J'0 1 0 0 0 -1 1 1
a1 @), )G 2 0 0 1 0 1
Qijig]’(llﬂn(ﬁi)&)/jo 2 0 0 1 _3
gL m@). )/ 2 0 0 9 9 o

where 2 < n < 5.
Step 4 Considering the LHS of equation @ after division by j,, we now calculate lower
D

bounds A(11, 2, s) of the orders OR W, s, Fl(ll)) for the cusps s of I'; (11).
cusp s A(11,2,¢)

0 0

1/n 1
2/11 [-14/11] = —1
3/11 [-24/11] = —2
411 [-16/11] = —1
5/11 [-34/11] = —3

where 2 < n < 5, using Theorem|[6.1] Again we note that each value is an integer.
Step 5 We summarize the calculations in Steps 4 and 5 in a Table. The gives lower bounds
for the LHS and RHS of equation (7.9) after division by j, at the cusps s.

cusps n(I'1(11);s) ORD(LHS;s) ORD(RHS;s) ORD(LHS — RHS);s)

100 1
0 11 >0 >0 >0

1/n 11 >1 >0 >0

2/11 1 > —1 -1 > -1

3/11 1 > -2 -2 > -2

4/11 1 > —1 -1 > -1

5/11 1 > -3 -3 > -3
where 2 < n < 5. The constant B (in equation ) is the sum of the lower bounds
in the last column, so that B = —7.

Step 6 As in the previous case, the LHS and RHS are weakly holomorphic modular forms of
weight 0 on I'; (11). So in the Valence Formula, ‘1‘—]2“ = 0. The result follows provided
we can show that ORD(LH S — RH S, ico,I'1(11)) > 8. This is easily verified using
MAPLE.

7.2. Rank mod 13 identities.

7.2.1. Identity for K30. Let the permutation 7, and the generalized eta function j(z) =
j(p, 7, z) be defined as in Definition[3.4]and[1.7] The following is an identity for K13,0(C13, 2)
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in terms of generalized eta-functions :

00 12
(7.10) Kis0(Cis,2) = (40" Z (Z N(k,13,13n = 7) Cfg) q"

n=1 k=0

_ ZZ ("“(3))) crsnr j (13,7 (0), 2),

where
771> = (157 _27 _37 _27 _17 _37 _2)7

and the coefficients are :

C13,1,0 = 3C1111 + 3C11? + 5<§1 + <171 + C?l + 5<151 + 3@1 + 3<121 + 95,
C13,2,0 = 1111 - 3C11? - C% +2<§1 - 2C171 _2§161 +24151 - Cﬁ _361 +C121 -2,
C13,3,0 = 5C1111 +€11?+5§?1 +2<€;1 ‘|‘3€171 +3C161 +2Cir)1 +5Cf1 +€§1 +5C121 +6,
Gz =G 207 2 +2¢ +28 + ¢ - 1,
cisso = —(C + G +2¢0 + ¢ +2¢0 + 260 + G+ 26 + G+ G+ 1),
aseo = —C +2¢ +2¢ - - +2¢ +2¢ — G+ 3,
C13,1,1 = 13 ( 11? - C?l + <fl + 4151 - Cﬁ + <fl + 1)7
c132,1 = —13 ( WG+ G+ GG+ G+ 2) ;
—13 (2c1 9 8 7 6 5 492 4o
C13,3,1 ( G + G+ Gy Gy G+ Gy Gy 2¢G + ) )
cizan =13 (CH + ¢+ i+ + G+ Ch + G+ G+ 1),
c1351 = —13 (<181 + Ci) )
cisen = —13 (Gl + G7 + ¢ + ¢ + G+ G-

We note that a different but similar identity for &Cy3 ¢((13, 2) was found previously by the first
author [[13, Section 6.5].

7.2.2. A quadratic residue case. The following is an identity for Ky32((i3, ) in terms of
generalized eta-functions :

[ee) 12
(7.11) Ki32(Cis,2) = 4750 ¢")sc (Z (Z N(k,13,13n — 5) ci%) q"
n=1

k=0

- (C173 + C163 - Cir)s - Cf?)) qoq)13,4(Q)>
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f131 Z zl: 26:(
f1562

k=—1r=1

) ClB,r,kj(1377T7”(771>)7z)7

where
771> - (157 _27 _37 _27 _17 _37 _2)7

and the coefficients are :

C13,1,-1 = Ql?? -3 G)3 + Cf:a -2 §173 —2 Cf3 + Cir)3 - 3&3 + Ci’a + 1,

cizz1 = —(Gis + Gl + 205 + Gl + 3¢ + 3 + (s + 2G5 + Gy + Gy + 1),

33,1 = —( 11§ + C(i):% + C183 + Cir)s + Cﬁs + 4123 +1),

C134,-1 = — 111? - ng + C173 + C?s - C153 - C?sy

1351 = —C1131. - 5C11:? - 7@3 - 9C§3 —12 5173 - 12@3 - 94153 - 7<f3 - 5@3 - 4123 + 2,

c36-1 =4Cl3 +2¢5 =5 — 3T + 25+ 275 — 3P — 515 +2(s +4 (5 — 3,
c13.1,0 = 0,

C132,0 = 0,
C133,0 = 0,
c13,4,0 = 0,

ciago = —(Cs + G5 +2¢+ 2 +2¢ + 2+ 20 + 205 + (s + (5 + 1),
C13,6,0 = —Cf3 + <173 + C?s - §1537
iz = 13 (Cl3 + (s + (G + 5 + (s + (B + 2),

321 = —13 ({15 + (s + s + Cs),

1331 = —13 (Ciz + (s + (s + (s + Gl + (s + 1),

C13,4,1 = —13 (<193 + Cﬁs),

ci3s1 = —13 (Cis + Gis + (s + 2G75 + 2G5 + 275 + 2G5 + G + (s + (),
cizg1 = 13 (Cls — (s — (B — (35 — (s + (T — 1),

7.2.3. A quadratic non-residue case. The following is an identity for y3((3, 2) in terms
of generalized eta-functions :

00 12
(7.12) Ki3.1(Ci3,2) = 475 (4% ¢") s Z (Z N(k,13,13n — 6) Cf:),) q

n=1 k=0

fi3.1(2) L n(13z) 2 g
= Z Z( ) c13rk J (13, (1), 2),

J135(2) k=—1r=1
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where
771> = (15’ _27 _37 _27 _17 _37 _2)7

and the coefficients are :

Ciz 1,1 = Gy — Gy — Gy + (5 + 2,

C132,-1 = — 11§ +4C11?? +<?3 _4Cf3 +3C173 +3§f3 _4Ci§3 +G13 +4C§3 - §123 + 6,

cias-1 =33 + Gy + 2 + G+ 2¢0 + 2005 + Gy + 2G5 + G + 305 + 3,

C13,4,—1 = 2(1% + 4<11?? + 363 + 2@3 - C173 - C163 + 2Cf3 + 3&3 + 4<:133 + 2C123 -1,

€13,5,—-1 = _(3 41131 + 5C11:? + 8(?3 + 10 Cf:a +11 4173 + 11@?3 + 10C153 + 8&3 + 563 + 3<123 + 1)7

11 9 8 5 4 2
c13,6,-1 = G13 — C3 — 213 — 2(75 — (i3 + (i3,

C13,1,0 = 0,
C13,2,0 = 0,
C13,3,0 = 0,
c134,0 = 0,
1350 = Cis — (s — (13 + (is + 2,
C13,6,0 = 0,

cisa1 = —13 (Giz + Gy + Gy + s + ¢s + Gy + (i + G + s + ¢y + 1),
cizp1 =13 (- 11§ + i3 — (3 — Cir)s + Ci% —(h+1),

331 = 13 ( 11§ + C?:s + <173 + C163 + Gl?) + C123 +2),

cizar = 13 (G5 + G + G + G + Ciis + Ciy),

1351 = =13 (Cig + s + Gl + 2¢3 + 2005 + (3 + G + Giy),

iz, = —13 (C??) + Gg?, + C153 + Gls)-

Below, we present one identity for each of the quadratic residue, quadratic non-residue
and m = 0 cases for p = 17 and p = 19. These are new and do not seem to appear in the
literature elsewhere.

7.3. Rank mod 17 identities.

7.3.1. Identity for Ki7o. Let the permutation 7, and the generalized eta function j(z) =
J(p, . z) be defined as in Deﬁnitionand The following is an identity for /Cy7,0((17, 2)
in terms of generalized eta-functions :

n=1 k=0

[e9) 16
(7.13) Ki70(Gi7,2) = (0" 0" ) Z (Z N(k,17,17n — 12) §f7) q"
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3y (1

3k
) Cl7,r,kj(177 71-7‘(771>)72> +

k=0 r=1
1 8 3k
172 )
z(’“ >) dun e §(17, 7 (7). 2),
k=0 r=1 77(2)

where
ni = (15,—3,—1,—2,—1,—-2,—1,-2,—1)
ng = (27,—2,—2,—3, -2, —4, —4, —4, —4),

and the coefficients c17,x, di7,5 1 < 7 < 8,0 < k < 2 are linear combinations of cyclo-
tomic integers like the mod 11 and 13 identities found previously. We do not include them
here.

7.3.2. A quadratic residue case. The following is an identity for K7 12((17, 2) in terms of
generalized eta-functions :

n=1 k=0

00 16
714 Kirae(Gr2) = 67 (674w (Z (Z N (k,17,17n) ciz) q

—(Gr+ 7 —2) qoq)l?,s(Q))

:f1772 ii(
f1752 —1
8

3k
) crmmn J (1T, 70 (7). 2)

3k
) dl?,'r,kj(177 ﬂr(@)az))a

k=-1
1

+ 23 (5

—1 r=1

where
n = (15,-3,—1,-2,—1,-2, -1, -2, —1),
nh = (27, -2, -2, —3, -2, —4, —4, —4, —4),
and the coefficients ci7, 4, di7 5, 1 < 7 < 8,0 < k < 2 are linear combinations of cyclo-

tomic integers like the identities found previously. We do not include them here. We however
note that ¢;7,,_; =0for1 <r <8andr #7.

7.3.3. A quadratic non-residue case. The following is an identity for K7 1((i7, 2) in terms
of generalized eta-functions :
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n=1 \k=0

(715 Kira(Giro2) = q7 (¢ ¢! OOZ (ZN (k, 17, 17n—11><17> q"

_ firal?) [ (0(172) Skc (17, 7. (), 2
_f17,8(2)<zz( ) o))

k=0 r=1 n(z)
18 n(172) 3k | B
+k:1;< (2) > d17,r7k](17,7rr(n2),z)>,

where
771> = (15’ _Sa _1a _27 _17 _27 _17 _27 _1)7
775 = (277 _27 _27 _37 _27 _47 _47 _47 _4)7

and the coefficients ci7, 5, di7,5, 1 <7 < 8,0 < k < 2 are linear combinations cyclotomic
integers like the identities found previously. We do not include them here. We however note
that dy7, 1 = 0 forr =3,5,6 and 7.

7.4. Rank mod 19 identities.

7.4.1. Identtty for KCi9. Let the permutation 7, and the generalized eta function j(z) =
J (p, 7, z) be defined as in Deﬁnltlonﬂand. 1.7 The following is an identity for K19 0(C19, 2)
in terms of generalized eta-functions :

(7.16)

IC1970(C19,Z) Z <ZN k 19 19n — )Cfg) q
n=1

2 9 n(192) 4k . R | .
= Z Z ( ) <6197r,k ](197 Wr(nl)v Z) + dem,k’](lga 7-‘—7“(712)7 Z)“‘

elQ,T,kj(]-97 7TT(TL—>3), Z)),

where
ny = (27,-3,—2,—4,—4,-3,-3,-2,-3,—1),
n5 = (39,—5,—2,—5,—5,—3,—5,—2, -5, —5),
nh = (39,—5,—4,—3,—4,—5,—4,—4,—5,-3),
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and the coefficients cig . x, di9r i, €19,k 1 < 7 < 9,0 < £ < 2 are linear combinations
of cyclotomic integers like the mod 11,13 and 17 identities found previously. We do not
include them here.

7.4.2. A quadratic residue case. The following is an identity for Kyg 15((19, 2) in terms of
generalized eta-functions :

(7.17)
00 18
Ki19,15(Ci9, 2) = q%(qm; 7)o ( Z (Z N(k,19,19n) Cfg) q"
n=1 k=0
+ (Go+ (15— 2) 90@19,3((1))
(7.18)
i J19.6(2) 2, o 1n(192) . . .
= f19,5(z) <kz_:1; ( 77(2) ) (C1g,r,kj(19;77r(n1)72) + dl9,r,k](1977rr(n2)7 Z)
+ el9,r,kj(197 WT(”B); Z))) )
where

i = (39, -5, -5, —4,—5,—4,-5,—3,—5,—1),
5 = (39, 3,5, =5, =5, =3, =2, —4, =5, —5),
773> = (397 _47 _57 _47 _37 _37 _47 _57 _57 _4)7

and the coefficients cig, i, di9 .k, €197k, 1 <7 <9, —1 < k < 2 are linear combinations of
cyclotomic integers like the identities found previously. We do not include them here. We
however note that cjg,o = Ofor1 < r < 9,dyg,_1 =0forr =1,2,3,5,6,7,8,9, and
d19,r,0 =0forr = ]_, 27 5, 8, 9.

7.4.3. A quadratic non-residue case. The following is an identity for K191 ({19, ) in terms
of generalized eta-functions :

(7.19)
) 00 18
Kio1(C10.2) = 47 (¢"%:¢")o0 Y | (Z N(k,19,19n — 14) dz) 7"

n=1 k=0
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(7.20)
f . 2 9
f“’s 3 ( >N ( ) (e10,,6 719, 7, (0). 2) + o e (19, 7 (2]
19,9( k=—1r=1
+ 619,1ﬂ,k 3(197 7r7”<773>)7 Z))) )
where
771> - (397 57_57 _47_57 47 57_37_57_1>7
TT; = (397_37_57_57_57 37 27 47_57_5>7
3 = (39, —4,—5,—4,-3,-3,—4,—5,—5,—4),

and the coefficients cig, i, d19 .k, €197k, 1 <7 <9, —1 < k < 2 are linear combinations of
cyclotomic integers like the identities found previously. We do not include them here. We
however note that cjg, 2 = 0for1 <7 <9,dyg, 1 =0forl <r <9, and dyg,o = 0 for
r=1,2,4,56,7,9.

8. CONCLUDING REMARKS

In this paper we have found new symmetries for Dyson’s rank function. As well we
have extended the work of [13]] and found explicit p-dissection identities that generalize
Ramanujan’s result @ to the cases p = 13, 17 and 19. It is a non-trivial problem to
find the generalized eta-quotients that are needed in these identities. What helps is knowing
lower bounds for orders at cusps. Our approach has been by a computer search. It would
be interesting to find more exact conditions for the generalized eta-quotients involved and
prove that identities of this type persist for all larger primes p. The next case to consider is
p = 23. Another problem to consider is extending the results of this paper to other rank type
functions. For example investigate whether there are similar symmetry type results for the
Ms-rank [5] and for the overpartition rank [[15].
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