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ABSTRACT. We give combinatorial interpretations of two residual cranks of overpartitions
defined by Bringmann, Lovejoy and Osburn in 2009 analogous to the crank of partitions
given by Andrews and Garvan in 1988. As a consequence, we improve upon their definitions
and find the true residual cranks of overpartitions. Furthermore, we investigate the combi-
natorial interpretation of an M2-crank of partitions without repeated odd parts and explore
connections of these statistics with their companion rank counterparts and the tenth order
mock theta functions of Ramanujan.

1. INTRODUCTION

In 2004, Sylvie Corteel and Jeremy Lovejoy [9] introduced the concept of overpartitions.
An overpartition is a partition in which the first occurrence of a number may be overlined.
For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

In 2009, Bringmann, Lovejoy and Osburn [5] defined what they called “residual cranks”
for overpartitions and studied the quasimodularity properties of the moments of these two
cranks. In their paper, the authors mention that the crank for partitions arose because of its
relation to Ramanujan’s congruences and the non existence of such simple congruences for
overpartitions was studied by Choi [6].

The elusive crank for partitions was found by Andrews and the first author in search of a
combinatorial explanation of the mod 11 congruence of Ramanujan [1]. The crank of a par-
tition is defined as the largest part if there are no ones in the partition and otherwise the
number of parts larger than the number of ones minus the number of ones. It divides the
partitions of 5n+ 4, 6n+ 5 and 11n+ 6 into 5, 7 and 11 equinumerous classes respectively,
thus providing an almost combinatorial explanation of all three partition congruences of Ra-
manujan. Let M(m,n) denote the number of partitions of n with crank m. Many authors
mistakenly write

∞∑
n=0

∑
m

M(m,n) zm qn =
(q; q)∞

(zq; q)∞(z−1q; q)∞
,
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where we use the standard q-notation :

(a; q)∞ =
∞∏
k=0

(1− aqk),

(a; q)n =
(a; q)∞
(aqn; q)∞

.

This is a mistake since
∞∑
n=0

∑
m

NV (m,n) z
m qn =

(q; q)∞
(zq; q)∞(z−1q; q)∞

(1.1)

= 1 + (−1 + z + z−1)q + · · ·
so that

NV (−1, 1) = 1, NV (0, 1) = −1, NV (1, 1) = 1,

but
M(−1, 1) = 1,M(0, 1) = 0,M(1, 1) = 0.

(1.1) is the generating function for vector partitions of n with vector crank m (see [1], [10],
[11] for more details). In [12], it was shown that NV (m,n) ≥ 0 for n > 1. The proof of
this inequality led to the solution of Dyson’s crank conjecture in terms of partitions and the
definition of the crank [1] so that

NV (m,n) =M(m,n)

for n > 1.

We define

C(z, q) :=
(q; q)∞

(zq; q)∞(z−1q; q)∞
= 1 + (−1 + z + z−1)q +

∞∑
n=2

∑
m

M(m,n) zm qn.

We note that the function C(z, q) appears in Ramanujan’s Lost Notebook (see [10], [11],
[12]). The Lost Notebook contains the 5-dissection of C(ζ5, q) (where ζ5 = exp(2πi

5
)) and

the analogue for Dyson’s rank function. The rank of a partition is the largest part minus the
number of parts. In the Lost Notebook, these functions are also connected with Ramanujan’s
fifth order mock theta functions, via rank and crank differences. For example, if N(a,m, n)
and M(a,m, n) denote the number of partitions of n with rank and respectively crank con-
gruent to a modulo m, then∑

n≥0

3(N(1, 5, 5n)−N(2, 5, 5n))qn −
∑
n≥0

(M(0, 5, 5n)−M(1, 5, 5n))qn

= χ0(q)− 2,where

χ0(q) =
∑
n≥0

qn

(qn+1; q)n
,
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is one of Ramanujan’s fifth order mock theta functions. This result is equivalent to Ramanu-
jan’s Equation (4.11) on [12, p.36]. This is the First Mock Theta Conjecture [2] which was
proved by Hickerson [14].

Bringmann, Lovejoy and Osburn [5] were in fact the first to define such a notion of crank for
overpartitions from which they then deduce congruence properties for combinatorial func-
tions which can be expressed in terms of the second overpartition rank moment and the
corresponding residual crank moment. Several authors have since considered these residual
cranks and have worked on their generalizations, finding and proving inequalities between
the moments of these functions in conjunction with other overpartition statistics, among
other problems.

The coefficients M(m,n) and M2(m,n) are defined by the following :

C(z, q) =
∞∑
n=0

∑
m

M(m,n) zm qn = (−q; q)∞C(z; q) =
(q2; q2)∞

(zq; q)∞(z−1q; q)∞
,

C2(z, q) =
∞∑
n=0

∑
m

M2(m,n) zm qn =
(−q; q)∞
(q; q2)∞

C(z; q2) =
(−q; q)∞(q2; q2)∞

(q; q2)∞(zq2; q2)∞(z−1q2; q2)∞
.

Bringmann, Lovejoy and Osburn [5] describe M(m,n) (resp. M2(m,n)) as the number of
overpartitions of n with first (resp. second) residual crank equal to m. They claim that the
first residual crank of an overpartition is obtained by taking the crank of the subpartition
consisting of the non-overlined parts. Similarly, the second residual crank is obtained by
taking the crank of the subpartition consisting of all of the even nonoverlined parts divided
by two. The authors state that they make the appropriate modifications based on the fact that
for partitions we have M(0, 1) = −1 and M(−1, 1) = M(1, 1) = 1. However, what they
claim is not counting overpartitions but involves a modified count since

M(m,n) ̸= NV (m,n)

for (m,n) = (0, 1), (1, 1). In this paper, we give combinatorial interpretations of M(m,n)
and M2(m,n) solely in terms of overpartitions with no adjusted weights. These interpre-
tations are given in Theorems 1.2 and 1.4 below. Our new definitions of the first and sec-
ond residual cranks depend on the overlined parts of the overpartition if there are no non-
overlined parts.

We describe Bringmann, Lovejoy and Osburn’s modified count at the end of Section 2.

For an ordinary partition π, let ℓ(π) denote the largest part of π, ω(π) denote the number
of ones in π, and µ(π) denote the number of parts of π larger than ω(π).
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Then

crank(π) =


ℓ(π) if ω(π) = 0,

µ(π)− ω(π) otherwise.

Let P , PD, PO and PE denote the sets of unrestricted partitions, partitions into distinct
parts, partitions into odd parts and partitions into even parts respectively.

Definition 1.1. Let π be a partition where all parts are distinct. Define λ(π) as

λ(π) =

{
0 if π = ϕ or ℓ(π), ℓ(π)− 1 are both parts,
1 if π = 1 or has only one part or otherwise.

Then writing an overpartition as an element of −→π = (π1, π2) ∈ PD × P , the true first
residual crank of overpartitions is given by

crank1(−→π ) =

{
crank(π2) if π2 ̸= ϕ,

λ(π1) if π2 = ϕ.

Theorem 1.2. The number of overpartitions −→π of n with crank1(−→π ) = m is M(m,n) for
all n.

Definition 1.3. Let π be a partition where all parts are distinct. We define κ(π) into the
following subcases.

Case I : ℓ(π) ≥ 4

κ(π) =

{
0 if ℓ(π)− 1 or ℓ(π)− 2 are parts of π,
1 otherwise.

Case II : ℓ(π) = 3 or 2

κ(π) =

{
1 if there is only one part,
0 otherwise.

Case III : ℓ(π) = 1 then κ(π) = 0.

Then, writing an overpartition as an element of −→π = (π1, π2, π3) ∈ PD × PE × PO,
the true second residual crank of overpartitions is given by

crank2(−→π ) =


crank(π2

2
) if π2 ̸= ϕ,

κ(π1) if π2 = ϕ and π1 ̸= ϕ,
0 otherwise,

where a partition π
2

is obtained by dividing each part of the partition π ∈ PE by 2.

Theorem 1.4. The number of overpartitions −→π of n with crank2(−→π ) = m is M2(m,n) for
all n.
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A notable significance of the first residual crank of overpartitions lies in the fact that it
arises in the formulas for overpartition rank differences. Some instances of overpartition
rank differences are mock theta functions of order 10 as noted by Lovejoy and Osburn [18,
p. 197] :∑

n≥0

(N(0, 5, 5n+ 1)−N(2, 5, 5n+ 1))qn = 2ϕ(q),∑
n≥0

(N(0, 5, 5n+ 4) +N(1, 5, 5n+ 4)− 2N(2, 5, 5n+ 4))qn+1 = 2ψ(q),

where

ϕ(q) =
∑
n≥0

q(
n+1
2 )

(q; q2)n+1

and ψ(q) =
∑
n≥0

q(
n+2
2 )

(q; q2)n+1

are two tenth order mock theta functions of Ramanujan.

Similarly, some instances of overpartition rank differences can be written as a sum of a
first residual crank difference and a mock theta function of order 10 analogous to the fact
that some partition rank differences can be written as a sum of the Andrews-Garvan crank
differences and a mock theta function of order 5. For example, ifN(a,m, n) andM(a,m, n)
denote the number of overpartitions of n with rank and respectively first residual crank con-
gruent to a modulo m, then one can deduce that∑

n≥0

(N(0, 5, 5n+ 1)−N(1, 5, 5n+ 1))qn −
∑
n≥0

(M(0, 5, 5n+ 1)−M(1, 5, 5n+ 1))qn

= 3ϕ(q).

The interested reader may try to see that this follows from the overpartition rank difference
identities of Lovejoy and Osburn [16, Equations 1.6 and 1.11], overpartition first residual
crank difference identities due to Garvan and Jennings-Shaffer [13, Theorem 2.10] and the
identity

ϕ(q) = a2(q) + 2qh(q2, q5)

for the tenth order mock theta function ϕ(q) due to Choi (see [7, p. 534] for details).

Similarly, one can deduce that∑
n≥0

(N(1, 5, 5n+ 4)−N(2, 5, 5n+ 4))qn −
∑
n≥0

(M(0, 5, 5n+ 4)−M(2, 5, 5n+ 4))qn

= 3q−1ψ(q).

This follows from the overpartition rank difference identities of Lovejoy and Osburn [16,
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Equations 1.6 and 1.11], overpartition first residual crank difference identities due to Garvan
and Jennings-Shaffer [13, Theorem 2.10] and the identity

ψ(q) = a1(q) + 2qh(q, q5)

for the tenth order mock theta function ψ(q) due to Choi (see [7, p. 533] for details).

The two other tenth order mock theta functions of Ramanujan have connections with the
M2-rank and crank of partitions without repeated odd parts which we explore in a later sec-
tion.

On the other hand, the second residual crank is the companion statistic to the M2-rank of
overpartitions. More specifically, several instances of linear combinations of M2-rank dif-
ferences for overpartitions can be written in terms of linear combinations of second residual
crank differences for overpartitions and many such combinations have nice Jacobi product
representations. A systematic study of these identities will be taken up in a later paper. Fur-
ther, the second residual crank of overpartitions also arises in the formula for the two variable
overpartition rank generating function. Specifically, replacing z by a root of unity, the two
variable overpartition rank generating function can be written as the sum of a function due
to Zwegers, a Mordell integral of a theta function and the second residual crank generating
function with appropriate multipliers (see [15, Corollary 2.2] for details).

The rest of our paper is organized into three sections as follows. In Sections 2 and 3, fol-
lowing the lines of argument of Andrews and the first author [1], we deduce combinatorial
interpretations of the first and second residual crank of overpartitions respectively by dis-
secting their generating functions to arrive at the definitions and theorems stated above in the
introduction. We close each of these two sections with an illustrative example. In Section 4,
we define anM2-crank of partitions without repeated odd parts and explore its combinatorial
interpretation and relations with other two tenth order mock theta functions of Ramanujan
and the M2-rank of partitions without repeated odd parts studied by Lovejoy and Osburn
[17].

2. COMBINATORIAL INTERPRETATION OF THE FIRST RESIDUAL CRANK

Cauchy’s identity states ∑
n≥0

(a)n
(q)n

tn =
(a; q)∞
(t; q)∞

.

Using this we have

C(z, q) =
(q; q)∞

(zq; q)∞(z−1q; q)∞

=
1− q

(zq; q)∞

(q2; q)∞
(z−1q; q)∞



RESIDUAL CRANKS OF OVERPARTITIONS 7

=
1− q

(zq; q)∞

∞∑
n=0

(zq; q)n
(q; q)n

(z−1q)n

=
1− q

(zq; q)∞
+

∞∑
n=1

z−nqn

(q2; q)n−1(zqn+1; q)∞

= (1− q)
∞∑
n=0

znqn

(q; q)n
+

∞∑
n=1

z−nqn

(q2; q)n−1(zqn+1; q)∞

= (1− q) + zq +
∞∑
n=2

znqn

(q2; q)n−1

+
∞∑
n=1

z−nqn

(q2; q)n−1(zqn+1; q)∞

= (1− q + zq) +
∞∑
n=1

∑
m

M(m,n) zm qn.

SinceC(z, q) = (−q; q)∞C(z; q), we look for a combinatorial interpretation of (−q; q)∞(1−
q + zq).

We know

(−q; q)∞ = 1 +
∞∑

m=1

(1 + q) · · · (1 + qm−1)qm

where m corresponds to the largest part of a partition.

Therefore
∞∑

m=1

(1 + q) · · · (1 + qm−1)qm = (−q; q)∞ − 1.

Removing the first part, we get
∞∑

m=2

(1 + q) · · · (1 + qm−2)(1 + qm−1)qm = (−q; q)∞ − 1− q.

Also, we have the following identity
∞∑

m=2

(1 + q) · · · (1 + qm−2)qm = q

∞∑
m=2

(1 + q) · · · (1 + qm−2)qm−1 = q((−q; q)∞ − 1).

Then, substituting the above expressions in the following line, we get

(−q; q)∞(1− q + zq) = 1 + zq + zq ((−q; q)∞ − 1) + ((−q; q)∞ − 1− q)− q((−q; q)∞ − 1)

= 1 + zq +
∞∑

m=2

(1 + q) · · · (1 + qm−2)qm(z + qm−1)

=
∑
π∈PD

zλ(π)q|π|
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where |π| is the sum of parts of π.

We write an overpartition as an element of −→π = (π1, π2) ∈ PD × P .

Thus

C(z, q) =
∞∑
n=0

∑
m

M(m,n) zm qn

= (−q; q)∞(1− q + zq) + (−q; q)∞
∞∑
n=1

∑
m

M(m,n) zm qn

=
∑

π1∈PD

zλ(π1)q|π1| +
∑

π1∈PD

q|π1|
∑
π2∈P
π2 ̸=ϕ

zcrank(π2)q|π2|

=
∑

−→π=(π1,π2)∈PD×P

zcrank1(
−→π )q|

−→π |

where

crank1(−→π ) =

{
crank(π2) if π2 ̸= ϕ

λ(π1) if π2 = ϕ,

and |−→π | = |(π1, π2)| = |π1|+ |π2|. Theorem 1.2 follows.

Below we present an example.

Overpartitions of 3 (−→π ) π1 λ(π1) π2 crank(π2) crank1(−→π )
3 ϕ 3 3 3
3 3 1 ϕ 1

2 + 1 ϕ 2 + 1 0 0
2 + 1 2 1 −1 −1
2 + 1 1 2 2 2
2 + 1 2 + 1 0 ϕ 0

1 + 1 + 1 ϕ 1 + 1 + 1 −3 −3
1 + 1 + 1 1 1 + 1 −2 −2

From the table we find

M(−3, 3) = 1,M(−2, 3) = 1,M(−1, 3) = 1

M(0, 3) = 2

M(1, 3) = 1,M(2, 3) = 1,M(3, 3) = 1.

This agrees with Bringmann, Lovejoy and Osburn’s modified count which we now describe.

Since
NV (−1, 1) = 1, NV (0, 1) = −1, NV (1, 1) =M(1, 1) = 1,
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if an overpartition of n has one 1 as an unoverlined part, then that overpartition contributes a
−1 to the count of M(0, n) and a +1 to M(−1, n) and M(1, n). They present the example
of the overpartition 7 + 5+ 2+ 1 which contributes a −1 to the count of M(0, 15) and a +1
to M(−1, 15) and M(1, 15). We make this adjustment more explicit with a further example.
The following is a table of the overpartitions of 3 excluding 2 + 1 and the cranks of their
subpartitions consisting of the non-overlined parts. We then evaluate the first residual crank
obtained after making the appropriate adjustment explained above. More precisely, the over-
partition 2 + 1 contributes a −1 to the count of M(0, 3) and a +1 to M(−1, 3) and M(1, 3).

Overpartitions of 3 Crank of the subpartition consisting
of the non-overlined parts

3 3
3 0

2 + 1 0
2 + 1 2
2 + 1 0

1 + 1 + 1 −3
1 + 1 + 1 −2

Then

M(−3, 3) = 1,M(−2, 3) = 1,M(−1, 3) = 0

M(0, 3) = 3

M(1, 3) = 1,M(2, 3) = 1,M(3, 3) = 0.

Making the adjustment described above we get

M(−3, 3) = 1,M(−2, 3) = 1,M(−1, 3) = 1

M(0, 3) = 2

M(1, 3) = 1,M(2, 3) = 1,M(3, 3) = 1,

which agrees with our calculations and the coefficient of q3 in the expansion of the generating
function of the first residual crank.

3. COMBINATORIAL INTERPRETATION OF THE SECOND RESIDUAL CRANK

The generating function for the second residual crank of overpartitions is

C2(z, q) =
(−q; q)∞
(q; q2)∞

C(z; q2),

where from the previous section, we have

C(z, q) =
(q; q)∞

(zq; q)∞(z−1q; q)∞

= (1− q + zq) +
∞∑
n=1

∑
m

M(m,n) zm qn.
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Then

C2(z, q) = (−q; q)∞

(1− q2 + zq2) +
∑
π∈P
π ̸=ϕ

zcrank(π)q2 |π|

 ∑
π∈PO

q|π|

= (−q; q)∞ (1− q2 + zq2)
∑
π∈PO

q|π| + (−q; q)∞
∑
π∈PE
π ̸=ϕ

zcrank(
π
2
)q|π|

∑
π∈PO

q|π|,

where the partition π
2

is obtained by dividing each part of the partition π ∈ PE by 2.

We look for a combinatorial interpretation of (−q; q)∞(1− q2 + zq2).

Akin to the previous section, we make use of the following identities.
∞∑

m=1

(1 + q) · · · (1 + qm−1)qm = (−q; q)∞ − 1.

Removing the first two parts, we get
∞∑

m=3

(1 + q) · · · (1 + qm−1)qm = (−q; q)∞ − 1− q2(1 + q)− q.

Also, we have the following identity
∞∑

m=3

(1 + q) · · · (1 + qm−3)qm = q2
∞∑

m=1

(1 + q) · · · (1 + qm−1)qm = q2((−q; q)∞ − 1).

Then, substituting the above expressions in the following two lines, we get

(−q; q)∞(1− q2 + zq2) = 1 + zq2(−q; q)∞ + (−q; q)∞ − 1− q2 − q2((−q; q)∞ − 1)

= 1 + q + q3 + zq2((−q; q)∞ − 1 + 1)+

((−q; q)∞ − 1− q2(1 + q)− q)− q2((−q; q)∞ − 1)

= 1 + q + q3 + zq2+
∞∑

m=3

(1 + q) · · · (1 + qm−3)qm(z + (1 + qm−2)(1 + qm−1)− 1)

= 1 + q + zq2 + q1+2 + zq3+
∞∑

m=4

(1 + q) · · · (1 + qm−3)qm(z + qm−1 + qm−2 + q(m−1)+(m−2))

=
∑
π∈PD

zκ(π)q|π|.

We proceed as before except we write an overpartition as an element −→π = (π1, π2, π3) ∈
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PD × PE × PO. Thus

C2(z, q) =
∞∑
n=0

∑
m

M2(m,n) zm qn

= (−q; q)∞(1− q2 + zq2)
1

(q; q2)∞
+ (−q; q)∞

∞∑
n=1

∑
m

M(m,n) zm q2n
1

(q; q2)∞

=
∑

π1∈PD

zκ(π1)q|π1|
∑

π3∈PO

q|π3| +
∑

π1∈PD

q|π1|
∑

π2∈PE
π2 ̸=ϕ

zcrank(
π2
2
)q|π2|

∑
π3∈PO

q|π3|

=
∑

−→π=(π1,π2,π3)∈PD×PE×PO

zcrank2(
−→π )q|

−→π |

where

crank2(−→π ) =


crank(π2

2
) if π2 ̸= ϕ,

κ(π1) if π2 = ϕ, π1 ̸= ϕ,
0 if π1 = π2 = ϕ,

and for a partition π into distinct parts, κ(π) is defined into three subcases as in Definition
1.3. Theorem 1.4 follows.

Below we present an example.

Overpartitions of 4 (−→π ) π1 κ(π1) π2 crank(π2

2
) crank2(−→π )

4 ϕ 4 2 2
4 4 1 ϕ 1

3 + 1 ϕ ϕ 0
3 + 1 3 1 ϕ 1
3 + 1 1 0 ϕ 0
3 + 1 3 + 1 0 ϕ 0
2 + 2 ϕ 2 + 2 −2 −2
2 + 2 2 1 2 −1 −1

2 + 1 + 1 ϕ 2 −1 −1
2 + 1 + 1 2 1 ϕ 1
2 + 1 + 1 1 0 2 −1 −1
2 + 1 + 1 2 + 1 0 ϕ 0

1 + 1 + 1 + 1 ϕ ϕ 0
1 + 1 + 1 + 1 1 0 ϕ 0

Expanding the generating function of the second residual crank, we find that the coefficient
of q4 is

z4 + 3z3 + 6z2 + 3z + 1

z2

which agrees with the crank values found in the table above.
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4. M2-RANK AND CRANK OF PARTITIONS WITHOUT REPEATED ODD PARTS

In 2008, Lovejoy and Osburn initiated a series of papers on finding formulas for generat-
ing functions of partition statistics’ differences using the approach developed by Atkin and
Swinnerton-Dyer [4]. In one of these papers [17], they proved formulas for the generating
functions forM2-rank differences for partitions without repeated odd parts. TheM2-rank for
partitions without repeated odd parts was first defined by Berkovich and the first author [3].
The M2-rank of such partitions is defined to be the number of columns minus the number of
rows of its 2-modular diagram and if N2(m,n) denotes the number of partitions of n with-
out repeated odd parts whose M2-rank is m, then the generating function is given by [17,
Equation 1.1]

N2(z, q) =
∞∑
n=0

∑
m

N2(m,n) zm qn =
∞∑
n=0

qn
2 (−q; q2)n
(zq2; q2)n(z−1q2; q2)n

.

Then, a natural M2-crank of partitions without repeated odd parts (say M2crank) is given by

M2(z, q) =
(q2; q2)∞

(zq2; q2)∞(z−1q2; q2)∞
(−q; q2)∞.

This crank is not new and appears in the work of the first author and Jennings-Shaffer [13],
where they define the M2-crank as follows. For a partition π of n with distinct odd parts we
take the crank of the partition πe

2
obtained by taking the subpartition πe, of the even parts of

π, and halving each part of πe. Then, if M2(m,n) is the number of partitions π of n with
distinct odd parts such that the partition πe

2
has crank m, then the generating function two

variable generating function for M2(m,n) is the formula above. However they note that this
interpretation is not quite correct and it fails for partitions with distinct odd parts whose only
even parts are a single two. Here, we deduce the exact combinatorial interpretation of the
M2crank.

We define

M2(z, q) =
(q2; q2)∞

(zq2; q2)∞(z−1q2; q2)∞
(−q; q2)∞ = (z − 1)q2 +

∞∑
n=0
n̸=2

∑
m

M2(m,n) zm qn.

4.1. Connections with tenth order mock theta functions. In [19, p. 9], Ramanujan gave
a list of identities involving four tenth order mock theta functions ϕ(q), ψ(q), X(q) and χ(q).
In Section 1, we saw that the rank and the first residual crank of overpartitions had connec-
tions with the tenth order mock theta functions ϕ(q) and ψ(q). In this section, we consider
the remaining two tenth order mock theta functions and establish their connections with the
M2-rank of partitions without repeated odd parts. If N2(a,m, n) and M2(a,m, n) denote
the number of partitions of n without repeated odd parts whose M2-rank and respectively
M2-crank are congruent to a modulo m, then one can deduce that∑

n≥0

(N2(0, 5, 5n)−N2(2, 5, 5n))qn = X(−q),where
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X(q) =
∑
n≥0

(−1)nqn
2

(−q; q)2n

is a tenth order mock theta function of Ramanujan. This follows from theM2-rank difference
identity of Lovejoy and Osburn [17, Equation 1.11] and the identity

X(q) = b1(q) + 2qk(q, q5)

for the tenth order mock theta function X(q) due to Choi (see [8, p. 183] for details).

Similarly, one can deduce that

∑
n≥0

(N2(1, 5, 5n+ 4)−N2(2, 5, 5n+ 4))qn = q−1χ(−q),where

χ(q) =
∑
n≥0

(−1)nq(n+1)2

(−q; q)2n+1

,

is the other tenth order mock theta function of Ramanujan. Again, this follows from the
M2-rank difference identity of Lovejoy and Osburn [17, Equation 1.10] and the identity

χ(q) = 2− qb2(q)− 2q2k(q2, q5)

for the tenth order mock theta function χ(q) due to Choi (see [8, p. 183] for details).

The Jacobi products that appear in the formulas for M2-rank differences for partitions with-
out repeated odd parts due to Lovejoy and Osburn [17, Theorem 1.2] also appear in for-
mulas for M2-crank differences for partitions without repeated odd parts due to Garvan and
Jennings-Shaffer [13, Theorem 2.12]. Combining these identities and the above two iden-
tities due to Choi, we can deduce relations between the M2-rank and crank of partitions
without repeated odd parts and the tenth order mock theta functions X(q) and χ(q) :

2
∑
n≥0

(N2(0, 5, 5n)−N2(1, 5, 5n))qn +
∑
n≥0

(M2(0, 5, 5n)−M2(1, 5, 5n))qn = 3X(−q),

2
∑
n≥0

(N2(0, 5, 5n+ 4)−N2(1, 5, 5n+ 4))qn −
∑
n≥0

(M2(0, 5, 5n+ 4)−M2(1, 5, 5n+ 4))qn

= q−1χ(−q).

4.2. Combinatorial interpretation of the M2crank (M2-crank for partitions without
repeated odd parts). From the previous sections we can deduce that

M2(z, q) = (−q; q2)∞C(z; q2)
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= (−q; q2)∞ (1− q2 + zq2) + (−q; q2)∞
∑
π∈PE
π ̸=ϕ

zcrank(
π
2
)q|π|,

where the partition π
2

is obtained by dividing each part of the partition π ∈ PE by 2.

We look for a combinatorial interpretation of (−q; q2)∞(1− q2 + zq2).

We know

(−q; q2)∞ = 1 +
∞∑

m=1

(1 + q)(1 + q3) · · · (1 + q2m−3)q2m−1

where 2m− 1 corresponds to the largest part of a partition into distinct odd parts.

Therefore
∞∑

m=1

(1 + q)(1 + q3) · · · (1 + q2m−3)q2m−1 = (−q; q2)∞ − 1.

Removing the first part, we get
∞∑

m=2

(1 + q)(1 + q3) · · · (1 + q2m−3)q2m−1 = (−q; q2)∞ − 1− q.

Also, we have the following identity
∞∑

m=2

(1 + q) · · · (1 + q2m−5)q2m−1 =
∞∑

m=1

(1 + q) · · · (1 + q2m−3)q2m+1

= q2
∞∑

m=1

(1 + q) · · · (1 + q2m−3)q2m−1

= q2((−q; q2)∞ − 1).

Then, substituting the above expressions in the following two lines, we get

(−q; q2)∞(1− q2 + zq2) = 1 + zq2(−q; q2)∞ + (−q; q2)∞ − 1− q2 − q2((−q; q2)∞ − 1)

= 1 + q − q2 + zq2((−q; q2)∞ − 1 + 1)+

((−q; q2)∞ − 1− q)− q2((−q; q2)∞ − 1)

= 1 + q + (z − 1)q2+
∞∑

m=2

(1 + q)(1 + q3) · · · (1 + q2m−5)q2m−1(z + q2m−3)

= 1 + q + (z − 1)q2 + (z + q)q3+
∞∑

m=3

(1 + q)(1 + q3) · · · (1 + q2m−5)q2m−1(z + q2m−3)

= 1 + q + (z − 1)q2 + (z + q)q3+
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∞∑
m=1

(1 + q)(1 + q3) · · · (1 + q2m−1)q2m+3(z + q2m+1)

= (z − 1)q2 +
∑

π∈POD

zθ(π)q|π|

where POD denotes the set of partitions into distinct odd parts, and θ(π) for π ∈ POD is
defined into the following two subcases.

Case I : ℓ(π) ≥ 5

θ(π) =

{
0 if ℓ(π)− 2 is a part of π,
1 otherwise.

Case II : ℓ(π) = 3 or 1

θ(π) =

{
0 if 1 is a part,
1 otherwise.

We consider a partition without repeated odd parts as an element −→π = (π1, π2) ∈ POD ×
PE . Then

M2(z, q) = (z − 1)q2 +
∞∑
n=0
n̸=2

∑
m

M2(m,n) zm qn

= (z − 1)q2 +
∑

π1∈POD

zθ(π1)q|π1| +
∑

π1∈POD

q|π1|
∑

π2∈PE
π2 ̸=ϕ

zcrank(
π2
2
)q|π2|

= (z − 1)q2 +
∑

−→π=(π1,π2)∈POD×PE

zM2crank(−→π )q|
−→π |

where

M2crank(−→π ) =

{
crank(π2

2
) if π2 ̸= ϕ,

θ(π1) if π2 = ϕ.

The following theorem follows easily.

Theorem 4.1. The number of partitions −→π of nwithout repeated odd parts withM2crank(−→π ) =
m is M2(m,n) for all n ̸= 2.

5. CONCLUSION

In this paper, we have seen that various rank and their companion crank statistics have
explicit relations to mock theta functions of order 5 and 10. A problem worth considering
is to explore more results of this type and relate other mock theta functions to rank and
crank differences. Furthermore, explicit p-dissections of rank-type statistics discussed in
this paper for higher primes p ≥ 7 are scarce in literature and might be another problem
worth pursuing.
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