FUNCTION : ETA[provemodfuncGAMMA0UpETAid] - prove U[p] eta-product identity CALLING SEQUENCE : provemodfuncGAMMA0UpETAid() provemodfuncGAMMA0UpETAid(gcomboP,p,etacombo,N) PARAMETERS : gcombo - sum of modular functions on Gamma[0](p*N) p - prime etacombo - sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N - Positive integer multiple of p GLOBAL VARIABLES : SYNOPSIS : This function PROVES the id U[p](EP) = etacombo global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp EXAMPLES : > with(qseries): > with(ETA): > provemodfuncGAMMA0UpETAidBATCH(); ------------------------------------------------------------- provemodfuncGAMMA0UpETAidBATCH(gcombo,p,etacombo,N) This a BATCH version of provemodfuncGAMMA0UpETAid gcombo = sum of modular functions on Gamma[0](p*N) p = prime etacombo = sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N = Positive integer multiple of p This function PROVES the id U[p](gcombo) = etacombo global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp ------------------------------------------------------------- > gpY1a := [50, 2, 25, -4, 20, -1, 10, -2, 5, 3, 4, -3, 2, 8, 1, -3]: > gpY1b := [50, 2, 25, -4, 20, 1, 10, -5, 5, 4, 4, 3, 2, -1]: > gpZ1a := [1, 3, 10, 10, 2, -2, 5, -7, 20, -3, 4, -1]: > gpZ1b := [1, 4, 10, 1, 2, -5, 5, -4, 20, 3, 4, 1]: > epY1a:=gp2etaprod(gpY1a): > epY1b:=gp2etaprod(gpY1b): > epZ1a:=gp2etaprod(gpZ1a): > epZ1b:=gp2etaprod(gpZ1b): > gcombo:=epY1a-4*epY1b: > etacombo:=-epZ1a-4*epZ1b: > noprint:=false: > provemodfuncGAMMA0UpETAidBATCH(gcombo,5,etacombo,20); *** There were NO errors. *** o each EP in gcombo is an MF on Gamma[0](100) *** o Each term in the etacombo is a modular function on Gamma0(20). *** o We also checked that the total order of each term etacombo was zero. *** To prove the identity U[5](EP)=etacombo we need to show that v[oo](ID) > 3 This means checking up to q^(4). We find that LHS - RHS is 43 O(q ) 43 [1, -3, O(q )] DISCUSSION : SEE ALSO :