FUNCTION : ETA[provemodfuncGAMMA0idBATCH] - proving etaid as a modfunc on Gamma0(N) CALLING SEQUENCE : provemodfuncGAMMA0idBATCH() provemodfuncGAMMA0idBATCH(etaid,N) provemodfuncGAMMA0idBATCH(symid,etaid,N) PARAMETERS : symid - symbolic form of the identity. etaid - sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N - positive integer - GLOBAL VARIABLES : qcheck,modfunccheck, totcheck, _ORDS,jptmp,jpqd,eptmp,gltmp etaPRODL,GPL,COFS,conpres,CONTERMS,mintottmp,consL,MFLB xprint, overrideproofq,_CUSPS,noprint qthreshold,proveit,printlocalsymid SYNOPSIS : This is a BATCH version of provemodfuncGAMMA0id It uses the global var qthreshold . symid = symbolic form of the identity. etaid = sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. CUSPS = Set of inequivalent cusps for Gamma[0](N). WIDS = List of corresponding widths. global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp EXAMPLES : > with(ETA): > provemodfuncGAMMA0idBATCH(); ------------------------------------------------------------- provemodfuncGAMMA0idBATCH(symid,etaid,N) provemodfuncGAMMA0idBATCH(etaid,N) This is a BATCH version of provemodfuncGAMMA0id It uses the global var qthreshold . symid = symbolic form of the identity. etaid = sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. CUSPS = Set of inequivalent cusps for Gamma[0](N). WIDS = List of corresponding widths. global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp ------------------------------------------------------------- > gpP:=[1,2,3,-2]: gpQ:=[2,2,6,-2]: > P:=gp2etaprod(gpP): > Q:=gp2etaprod(gpQ): > ETAid:=P*Q+9/P/Q - (Q/P)^3 - (P/Q)^3: > ETAidn:=etanormalid(%): > f1:=op(2,ETAidn)/9: > f2:=-op(3,ETAidn): > f3:=-op(4,ETAidn): > provemodfuncGAMMA0idBATCH(1+9*f1-f2-f3,6); *** There were NO errors. *** o Each term was modular function on Gamma0(6). *** o We also checked that the total order of each term was zero. To prove the identity we will need to verify if up to q^(3). *** The identity below is PROVED! [1, -2, 0] DISCUSSION : SEE ALSO :