FUNCTION: partitions[PDP] - Number of partitions of n (hard way) CALLING SEQUENCE: PDP(n) PARAMETERS: n - nonnegative integer GLOBAL VARIABLES: SYNOPSIS: PDP(n) computes p(D,n) the hard way (by counting a list of partitions) p(D,n) is the number of partitions of n into distinct parts EXAMPLES: > with(qseries): > with(partitions): > PDP(9); 8 > series(etaq(q,2,12)/etaq(q,1,12),q,11); 2 3 4 5 6 7 8 9 10 11 1 + q + q + 2 q + 2 q + 3 q + 4 q + 5 q + 6 q + 8 q + 10 q + O(q ) DISCUSSION: We see that p(D,9) = 8. Confirmed from the generating function SEE ALSO: ptnDP