FUNCTION: partitions[PSCHUR] - number of Schur partitions CALLING SEQUENCE: PSCHUR(n) PARAMETERS: n - positive integer - SYNOPSIS: Computes the number of ptns of n in which difference between parts is at least 3 and such that no two consecutive multiples of 3 occur as parts EXAMPLES: > with(qseries): > with(partitions): > PSCHURC(12); 6 > GENFUNC:=1+add(PSCHURC(n)*q^n,n=1..40); 40 39 38 37 36 35 34 GENFUNC := 169 q + 153 q + 139 q + 126 q + 114 q + 102 q + 91 q 33 32 31 30 29 28 27 26 + 82 q + 74 q + 67 q + 60 q + 53 q + 47 q + 42 q + 38 q 25 24 23 22 21 20 19 18 + 34 q + 30 q + 26 q + 23 q + 20 q + 18 q + 16 q + 14 q 17 16 15 14 13 12 11 10 9 + 12 q + 10 q + 9 q + 8 q + 7 q + 6 q + 5 q + 4 q + 3 q 8 7 6 5 4 3 2 + 3 q + 3 q + 2 q + 2 q + q + q + q + q + 1 > prodmake(GENFUNC,q,40); 5 7 11 13 17 19 1/((1 - q) (-q + 1) (-q + 1) (-q + 1) (-q + 1) (-q + 1) (-q + 1) 23 25 29 31 35 37 (-q + 1) (-q + 1) (-q + 1) (-q + 1) (-q + 1) (-q + 1)) > prodmake(GENFUNC,q,40,list); [-1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0] > seq(PSCHURC(n),n=1..20); 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18 DISCUSSION: Number of Schur partitions of 12 is 6. The generating function looks like a nice product. SEE ALSO: ptnSCHUR