FUNCTION:  partitions[PSCHUR] - number of Schur partitions
 
CALLING SEQUENCE:  PSCHUR(n)
 
PARAMETERS:     n - positive integer
                   -  
 
SYNOPSIS:  
  Computes the number of ptns of n in which difference between parts
  is at least 3 and such that no two consecutive multiples of 3
  occur as parts
                    
EXAMPLES:  
                    
> with(qseries):
> with(partitions):
> PSCHURC(12);
                                       6

> GENFUNC:=1+add(PSCHURC(n)*q^n,n=1..40);
                40        39        38        37        36        35       34
GENFUNC := 169 q   + 153 q   + 139 q   + 126 q   + 114 q   + 102 q   + 91 q

           33       32       31       30       29       28       27       26
     + 82 q   + 74 q   + 67 q   + 60 q   + 53 q   + 47 q   + 42 q   + 38 q

           25       24       23       22       21       20       19       18
     + 34 q   + 30 q   + 26 q   + 23 q   + 20 q   + 18 q   + 16 q   + 14 q

           17       16      15      14      13      12      11      10      9
     + 12 q   + 10 q   + 9 q   + 8 q   + 7 q   + 6 q   + 5 q   + 4 q   + 3 q

          8      7      6      5    4    3    2
     + 3 q  + 3 q  + 2 q  + 2 q  + q  + q  + q  + q + 1

> prodmake(GENFUNC,q,40);
              5         7         11         13         17         19
1/((1 - q) (-q  + 1) (-q  + 1) (-q   + 1) (-q   + 1) (-q   + 1) (-q   + 1)

       23         25         29         31         35         37
    (-q   + 1) (-q   + 1) (-q   + 1) (-q   + 1) (-q   + 1) (-q   + 1))

> prodmake(GENFUNC,q,40,list);
[-1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0,

    -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0]

> seq(PSCHURC(n),n=1..20);
        1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18

DISCUSSION:  Number of Schur partitions of 12 is 6. The generating
  function looks like a nice product.
                    
SEE ALSO: ptnSCHUR