Updated q-product tutorial for a q-series maple package

Frank Garvan

The original version of this tutorial was written Tuesday, December 15, 1998 and revised Friday, February 12, 1999

using Maple V (quite an old version of MAPLE).

Recent updates: 05.12.20, 06.10.20

Current version of MAPLE: MAPLE 2020.

Note: The research for the original version was supported by the NSF under grant number DMS-9870052 and

was Dedicated to George E. Andrews on the occasion of his 60th Birthday.

1. Introduction.

In the study of q-series one is quite often interested in identifying generating functions as infinite products. The classic example is the Rogers-Ramanujan identity:

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q,q)_n} = \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n-1})(1-q^{5n-4})}$$

Here we have used the notation in (2.2). It can be shown that the left-side of this identity is the generating function for partitions whose parts differ by at least two. The identity is equivalent to saying the number of such partitions of *n* is equinumerous with partitions of *n* into parts congruent to $\pm 1 \pmod{5}$.

The main goals of the package are to provide facility for handling the following problems.

1. Conversion of a given *q*-series into an *infinite* product.

2. Factorization of a given rational function into a finite q-product if one exists.

 $\begin{bmatrix} 3. & Find algebraic relations (if they exist) among the q-series in a given list. \end{bmatrix}$

A q-product has the form

$$\prod_{n=1}^{N} \left(1 - q^{j}\right)^{b_{j}} \tag{1.1}$$

where b_i are integers.

In [4, section 10.7], George Andrews also considered Problems 1 and 2, and asked for an easily accessible implementation. We provide implementations as well as considering factorisations into theta-products and eta-products. The package provides some basic functions for computing q-series expansions of eta functions, theta functions, Gaussian polynomials and q-products. It also has a function for sifting out coefficients of a q-series. It also has the basic infinite product identity, the quintuple product identity and Winquist's identity.

1.1 Installation instructions.

The **qseries** package can be downloadedvia the WWW. First use your favorite browser to access the URL: <u>https://qseries.org/fgarvan/qmaple/qseries/index.html</u>

Then you can find directions for installing the package.

2. Basic functions

We describe the basic functions in the package which are used to build *q*-series.

2.1. Finite q-products

2.1.1. Rising q-factorial

aqprod(a,q,n) returns the product

$$(a;q)_{n} = (1-a)(1-aq)(1-aq^{2})\cdots(1-aq^{n-1})$$
(1.2)

We also use the notation

$$(a;q)_{\infty} = \prod_{n=1}^{\infty} (1 - aq^{n-1}).$$

2.1.2 Gaussian polynomials

When $0 \le m \le n$, **qbin (q,m,n)** returns the Gaussian polynomial (or *q*-binomial coefficient)

$$\begin{bmatrix} n \\ m \end{bmatrix} = \frac{(q)_n}{(q)_m(q)_{n-m}}$$

_otherwise it returns 0.

2.2 Infinite products 2.2.1 Dedekind eta products

Suppose $\Im(\tau) > 0$, and $q = \exp(2\pi i \tau)$. The Dedekind eta function [27, p.121] is defined by

$$\eta(\tau) = \exp\left(\frac{\pi i \tau}{12}\right) \prod_{n=1}^{\infty} (1 - \exp(2\pi i n \tau)) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n).$$

etaq(q, k, T) returns the q-series expansion (up to q^T) of the eta product

$$\prod_{n=1}^{\infty} (1-q^{kn}).$$

This corresponds to the eta function $\eta(k\tau)$ except for a power of q. Eta products occur frequently in the study of q-series. For example, the generating function for p(n), the number of partitions of n, can be written as

$$\sum_{n=0}^{\infty} p(n) q^{n} = \prod_{n=1}^{\infty} \frac{1}{(1-q^{n})}.$$

See [1, pp. 3-4]. The generating function for the number of partitions of *n* that are *p*-cores [19], $a_p(n)$, can be written

$$\sum_{n=0}^{\infty} a_p(n) q^n = \prod_{n=1}^{\infty} \frac{\left(1 - q^{pn}\right)^p}{\left(1 - q^n\right)}$$

Granville and Ono [21] proved a long-standing conjecture in group representation theory using elementary and function-theoretic properties of the eta product above.

2.2.2. Theta functions

Jacobi [24, Vol I, pp. 497--538] defined four theta functions $\theta_i(z, q)$, *i*=1,2,3,4.

See also [41, Ch. XXI]. Each theta function can be written in terms of the others using a simple change of variables. For this reason, it is common to define

$$\Theta(z,q) \coloneqq \sum_{n=-\infty}^{\infty} z^n q^{n^2}$$

_theta (z,q,T) returns the truncated theta-series

$$\sum_{n=-T}^{T} z^n q^{n^2}.$$

The case z = 1 of Jacobi's theta functions occurs quite frequently. We define

$$\begin{split} \theta_2(q) &\coloneqq \sum_{n = -\infty}^{\infty} q^{\left(n + \frac{1}{2}\right)^2}, \\ \theta_3(q) &\coloneqq \sum_{n = -\infty}^{\infty} q^{n^2}, \\ \theta_4(q) &\coloneqq \sum_{n = -\infty}^{\infty} (-1)^n q^{n^2}. \end{split}$$

theta2(q,T), **theta3(q,T)**, **theta4(q,T)** (resp.) returns the *q*-series expansion to order $O(q^T)$ of $\theta_2(q), \theta_3(q)\theta_4(q)$, respectively.

Let *a*, and *b* be positive integers and suppose |q| < 1. Infinite products of the form

$$(q^a;q^b)_{\infty}(q^{b-a};q^b)_{\infty}$$

occur quite frequently in the theory of partitions and *q*-series. For example the right side of the Rogers-Ramanujan identity is the reciprocal of the product with (a, b) = (1, 5). In (3.4) we will see how the function **jacprodmake** can be used to identify such products.

3. Product Conversion.

In [1, p. 233], [3, section 10.7] there is a very nice and useful algorithm for converting a q-series into an infinite product. Any given q-series may be written formally as an infinite product

$$1 + \sum_{n=1}^{\infty} b_n q^n = \prod_{n=1}^{\infty} (1 - q^n)^{-a_n}.$$

Here we assume the b_n are integers. By taking the logarithmic derivative of both sides we can obtain the recurrence

$$n b_n = \sum_{j=1}^n b_n - j \sum_{d|n} d a_d.$$

Letting $a_n = 1$ we obtain the well-known special case

$$n p(n) = \sum_{j=1}^{n} p(n-j) \sigma(j).$$

We can also easily construct a recurrence for the a_n from the recurrence above.

The function **prodmake** is an implementation of Andrews' algorithm. Other related functions are **etamake** and **jacprodmake**.

3.1 prodmake

prodmake (f,q,T) converts the q-series f into an infinite product that agrees with f to q^{T} . Let's take a look at the left side of the Rogers-Ramanujan identity.

$$\begin{bmatrix} > \text{ with (qseries):} \\ > \text{ x:=add (q^ (n^2) / aqprod (q, q, n), n=0..8):} \\ > \text{ series (x, q, 50);} \\ 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 5q^9 + 6q^{10} + 7q^{11} + 9q^{12} + 10q^{13} \\ + 12q^{14} + 14q^{15} + 17q^{16} + 19q^{17} + 23q^{18} + 26q^{19} + 31q^{20} + 35q^{21} + 41q^{22} \\ + 46q^{23} + 54q^{24} + 61q^{25} + 70q^{26} + 79q^{27} + 91q^{28} + 102q^{29} + 117q^{30} + 131q^{31} \\ + 149q^{32} + 167q^{33} + 189q^{34} + 211q^{35} + 239q^{36} + 266q^{37} + 299q^{38} + 333q^{39} \\ + 374q^{40} + 415q^{41} + 465q^{42} + 515q^{43} + 575q^{44} + 637q^{45} + 709q^{46} + 783q^{47} \\ + 871q^{48} + 961q^{49} + O(q^{50}) \\ \hline \text{ prodmake (x, q, 40);} \\ 1/((1 - q)(-q^4 + 1)(-q^6 + 1)(-q^9 + 1)(-q^{11} + 1)(-q^{14} + 1)(-q^{16} + 1)(-q^{19} \\ + 1)(-q^{21} + 1)(-q^{24} + 1)(-q^{26} + 1)(-q^{29} + 1)(-q^{31} + 1)(-q^{34} + 1)(-q^{36} \\ + 1)(-q^{39} + 1)) \\ \hline \text{We have rediscovered the right side of the Rogers-Ramanujan identity!}$$

Exercise 1. Find (and prove) a product form for the *q*-series

The identity you find is originally due to Rogers [34, p.330]. See also Andrews [2, pp.38--39] for a list of

some related papers.

3.2 qfactor

The function **qfactor** is a version of **prodmake**.

qfactor (f, T) attempts to write a rational function f in q as a q-product, ,ie., as a product of terms of the

form $(1-q^i)$. The second argument **T** is optional. It specifies an an upper bound for the exponents of q that

can occur in the product. If **T** is not specified it is given a default value of 4d+3 where d is the maximum of the degree in q of the numerator and denominator. The algorithm is quite simple. First the function is factored as usual,

and then it uses **prodmake** to do further factorisation into *q*-products. Thus even if only part of the function can be written as a q-product **qfactor** is able to find it.

As an example we consider some rational functions T(r, h) introduced by Andrews [4, p.14] to explain

Rogers's [34] first proof of the Rogers-Ramanujan identities. The T(r, n) are defined recursively as follows:

```
T(r, 0) = 1.
(3.3)
(3.4) \quad T(r, 1) = 0,
(3.5) T(r, N) = -\sum_{\substack{1 \le 2j \le N}} \begin{bmatrix} r+2j \\ j \end{bmatrix} T(r+2j, N-2j).
   with (qseries) :
T:=proc(r,j)
          option remember;
          local x,k;
          x := 0;
          if j=0 or j=1 then
             RETURN ((j-1)^{2}) :
          else
               for k from 1 to floor(\frac{1}{2}) do
                     x:=x-qbin(q,k,r+2*k)*T(r+2*k,j-2*k);
                od:
                RETURN (expand(x));
          fi:
     end:
        t8:=T(8,8);
t8 := q^{42} + q^{41} + 2 q^{40} + 3 q^{39} + 5 q^{38} + 6 q^{37} + 9 q^{36} + 11 q^{35} + 15 q^{34} + 17 q^{33} + 21 q^{32}
                                                                                                         (3)
     + 23 q^{31} + 28 q^{30} + 29 q^{29} + 33 q^{28} + 34 q^{27} + 37 q^{26} + 36 q^{25} + 38 q^{24} + 36 q^{23}
```

$$\begin{array}{c} + 37 \, q^{22} + 34 \, q^{21} + 33 \, q^{20} + 29 \, q^{19} + 28 \, q^{18} + 23 \, q^{17} + 21 \, q^{16} + 17 \, q^{15} + 15 \, q^{14} \\ + 11 \, q^{13} + 9 \, q^{12} + 6 \, q^{11} + 5 \, q^{10} + 3 \, q^9 + 2 \, q^8 + q^7 + q^6 \\ \hline \text{factor(t8);} \\ q^6 \left(q^4 + q^3 + q^2 + q + 1\right) \left(q^4 - q^3 + q^2 - q + 1\right) \left(q^{10} + q^9 + q^8 + q^7 + q^6 + q^5 + q^4 + q^3 \\ + q^2 + q + 1\right) \left(q^4 + 1\right) \left(q^6 + q^3 + 1\right) \left(q^8 + 1\right) \\ \hline \text{gfactor(t8,20);} \\ \frac{q^6 \left(-q^{10} + 1\right) \left(-q^{11} + 1\right) \left(-q^9 + 1\right) \left(-q^{16} + 1\right)}{\left(1 - q\right) \left(-q^2 + 1\right) \left(-q^4 + 1\right) \left(-q^3 + 1\right)} \end{array}$$

Observe how we used **factor** to factor **t8** into cyclotomic polynomials. However, **qfactor** was able to factor **t8** as a q-product.

We see that

$$T(8,8) = \frac{(q^9;q)_3(1-q^{16})q^6}{(q;q)_4}.$$

EXERCISE 2. Use **qfactor** to factorize T(r,n) for different values of r and n. Then write T(r,n) (defined above) as a q-product for general r and n.

For our next example we examine the sum

$$\sum_{k=-\infty}^{\infty} (-1)^{k} q^{\frac{k(3k+1)}{2}} \begin{bmatrix} b+c\\c+k \end{bmatrix} \begin{bmatrix} c+a\\a+k \end{bmatrix} \begin{bmatrix} a+b\\b+k \end{bmatrix}.$$

> dixson:=proc(a,b,c,q)
> local x,k,y;
> x:=0: y:=min(a,b,c):
> for k from -y to y do
> x:=x+(-1)^(k)*q^(k*(3*k+1)/2)*
> qbin(q,c+k,b+c)*qbin(q,a+k,c+a)*qbin(q,b+k,a+b);
> od:
> RETURN(x):
> end:
> dx := expand(dixson(5,5,5,q)):
> qfactor(dx,20);
$$((-q^{10}+1)(-q^7+1)(-q^{14}+1)(-q^{11}+1)(-q^6+1)(-q^{12}+1)(-q^{15}+1)(-q^{13})(-q^{13})(-q^{13})(-q^{13}+1)(-q^{14}+1)(-q^{2}+1)(-q^{2}+1)^{2}(-q^{4}+1)^{2}(-q^{3}+1)^{2})$$

We find that

L we find that

$$\sum_{k=-\infty}^{\infty} (-1)^{k} q^{\frac{k(3k+1)}{2}} \left[\begin{array}{c} 10\\ 5+k \end{array} \right]^{3} = \frac{\left(q^{6}; q\right)_{10}}{\left(q; q\right)_{5}^{2}}.$$

EXERCISE 3. Write the sum

$$\sum_{k=-\infty}^{\infty} (-1)^{k} q^{\frac{k(3k+1)}{2}} \begin{bmatrix} 2a\\a+k \end{bmatrix}^{3}$$

as a q-product for general integral a. The identity you obtain is a special case of [4, Eq.(4.24), p.38].

3.3 etamake

Recall from (2.2.1) that **etaq** is the function to use for computing *q*-expansions of eta products. If one wants to apply the theory of modular forms to *q*-series it is quite useful to determine whether a given *q*-series is a product of eta functions. The function in the package for doing this conversion is **etamake**.

etamake (f,q,T) will write the given q-series f as a product of eta functions which agrees with f up to q^{T} . As an example, let's see how we can write the theta functions

as era products.
> t2:=theta2(q,100)/q^(1/4);

$$t2 := q^{156} + 2 q^{132} + 2 q^{110} + 2 q^{90} + 2 q^{72} + 2 q^{56} + 2 q^{42} + 2 q^{30} + 2 q^{20} + 2 q^{12} + 2 q^{6}$$
 (7)
 $+ 2 q^{2} + 2$

$$\frac{2\eta(4\tau)^2}{q^{1/4}\eta(2\tau)}$$
(8)

> t3:=theta3(q,100);

$$t3 := 2q^{121} + 2q^{100} + 2q^{81} + 2q^{64} + 2q^{49} + 2q^{36} + 2q^{25} + 2q^{16} + 2q^9 + 2q^4 + 2q$$
 (9)
+1

> etamake(t3,q,100);

$$\frac{\eta(2\tau)^5}{\eta(4\tau)^2\eta(\tau)^2}$$
(10)

>
$$t4:=theta4(q,100);$$

 $t4:=-2q^{121}+2q^{100}-2q^{81}+2q^{64}-2q^{49}+2q^{36}-2q^{25}+2q^{16}-2q^{9}+2q^{4}-2q$ (11)
+1
> $etamake(t4,q,100);$

$$\frac{\eta(\tau)^2}{\eta(2\tau)}$$
(12)

We are led to the well-known identities:

$$\begin{split} \theta_2(q) &\coloneqq \frac{2 \eta (4 \tau)^2}{\eta (2 \tau)}, \\ \theta_3(q) &\coloneqq \frac{\eta (2 \tau)^5}{\eta (4 \tau)^2 \eta (\tau)^2}, \\ \theta_4(q) &\coloneqq \frac{\eta (\tau)^2}{\eta (2 \tau)}. \end{split}$$

The idea of the algorithm is quite simple. Given a q-series f (say with leading coefficient 1) one just keeps recursively

multiplying by powers of the right eta function until the desired terms agree. For example, suppose we are given a

q-series

 $1 + c q^k + \cdots$

Then the next step is to multiply by $etaq(q, k, T)^{(-c)}$.

EXERCISE 4. Define the *q*-series

$$a(q) := \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} q^{n^2 + nm + m^2},$$

$$b(q) := \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} \omega^{n - m} q^{n^2 + nm + m^2},$$

$$c(q) := \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} q^{\left(\left(n + \frac{1}{3}\right)^2 + \left(n + \frac{1}{3}\right)\left(m + \frac{1}{3}\right) + \left(m + \frac{1}{3}\right)^2\right)}.$$

where $\omega = \exp\left(\frac{2\pi i}{3}\right)$. Two of the three functions above can be written as eta products. Can you find them? *Hint*: It would be wise to define > omega :=RootOf (z^2+z+1=0) ; See [12] for the answer and much more.

3.4 jacprodmake

In (2.2.2) we observed that the right side of the Rogers-Ramanujan identity could be written in terms of a Jacobi product. The function **jacprodmake** converts a q-series into a Jacobi-type product if one exists. Given a q-series f, **jacprodmake** (f, q, T) attempts to convert f into a product of theta functions that agrees with f to order $O(q^T)$. Each theta-function has the form **JAC**(a, b, infinity), where a, b are integers and $0 \le a < b$. If 0 < a, then **JAC**(a, b, infinity)

corresponds to the theta-product

$$(q^a;q^b)_{\infty}(q^{b-a};q^b)_{\infty}(q^b;q^b)$$

We call this a theta product because it is $\theta\left(-\frac{(b-2a)}{2}, \frac{b}{2}\right)$. The **jacprodmake** function is really a variant of **prodmake**.

The jacprodmake function is really a variant of **prodmake**. It involves using **prodmake** to compute the sequence of exponents and then searching for periodicity.

If a = 0, then **JAC(0,b,infinity)** corresponds to the eta-product $(q^b; q^b)_{\infty}$.

We note that this product can also be thought of as a theta-product since can be written

$$(q^{b};q^{b})_{\infty} = (q^{b};q^{3b})_{\infty}(q^{2b};q^{3b})_{\infty}(q^{3b};q^{3b})_{\infty}.$$

Let's re-examine the Rogers-Ramanujan identity.

> with (qseries):
> x:=1:
> for n from 1 to 8 do
> x:=x+q^ (n*n)/aqprod(q,q,n):
> od:
> x:=series(x,q,50):
> y:=jacprodmake(x,q,40);
y:=
$$\frac{JAC(0,5,\infty)}{JAC(1,5,\infty)}$$
(13)
> z:=jac2prod(y);
(14)

$$z := \frac{1}{\left(\frac{1}{2}, q^5 \right)_{\infty} \left(\frac{1}{2}, q^5 \right)_{\infty}}$$
(14)

<u></u>

Note that we were able to observe that the left side of the Rogers-Ramanujan identity (at least up through q^{40}) can be written as a quotient of theta functions. We used the function jac2prod, to simplify the result and get it into a more recognizable form. The function jac2prod(jacexpr) converts a product of theta functions into q-product form; ie., as a product of functions of the form $(q^a; q^b)_{\infty}$.

Here **jacexpr** is a product (or quotient) of terms **JAC**(i,j,infinity), where *i*, *j* are integers and $0 \le i < j$.

```
A related function is jac2series. This converts a Jacobi-type product into a form better for computing its q-series. It simply replaces each Jacobi-type product with its corresponding _theta-series.
```

```
> with(qseries):
> x:=0:
> for n from 0 to 10 do
```

> x := x + q^x (n* (n+1)/2) *aqprod (-q, q, n)/aqprod (q, q, 2*n+1) :
od:
> x:=series (x, q, 50) :
> jp:=jacprodmake (x, q, 50) ;
jp:=JAC(0, 14,
$$\infty$$
)^{13/2}/(JAC(1, 14, ∞)²JAC(3, 14, ∞)JAC(4, 14, ∞)JAC(5, 14, (15)
 ∞)JAC(6, 14, ∞) $\sqrt{JAC(7, 14, \infty)}$)
> jac2series (jp, 500) ;
(-q⁴⁹⁰ + q³⁶⁴ + q³⁰⁸ - q²¹⁰ - q¹⁶⁸ + q⁹⁸ + q⁷⁰ - q²⁸ - q¹⁴ + 1)^{13/2}/((-q⁶²¹ - q⁵¹³) (16)
+ q⁴⁹⁶ + q⁴⁰⁰ - q³⁸⁵ - q³⁰¹ + q²⁸⁸ + q²¹⁶ - q²⁰⁵ - q¹⁴⁵ + q¹³⁶ + q⁸⁸ - q⁸¹ - q⁴⁵
+ q⁴⁰ + q¹⁶ - q¹³ - q + 1)² (-q⁶⁰³ - q⁵³¹ + q⁴⁸⁰ + q⁴¹⁶ - q³⁷¹ - q³¹⁵ + q²⁷⁶ + q²²⁸)
- q¹⁹⁵ - q¹⁵⁵ + q¹²⁸ + q⁹⁶ - q⁷⁵ - q⁵¹ + q³⁶ + q²⁰ - q¹¹ - q³ + 1) (-q⁵⁹⁴ - q⁵⁴⁰)
+ q⁴⁷² + q⁴²⁴ - q³⁶⁴ - q³²² + q²⁷⁰ + q²³⁴ - q¹⁹⁰ - q¹⁶⁰ + q¹²⁴ + q¹⁰⁰ - q⁷² - q⁵⁴)
+ q³⁴ + q²² - q¹⁰ - q⁴ + 1) (-q⁵⁸⁵ - q⁵⁴⁹ + q⁴⁶⁴ + q⁴³² - q³⁵⁷ - q³²⁹ + q²⁶⁴ + q²⁴⁰)
- q¹⁸⁵ - q¹⁶⁵ + q¹²⁰ + q¹⁰⁴ - q⁶⁹ - q⁵⁷ + q³² + q²⁴ - q⁹ - q⁵ + 1) (-q⁵⁷⁶ - q⁵⁵⁸)
+ q⁴⁵⁶ + q⁴⁴⁰ - q³⁵⁰ - q³³⁶ + q²⁵⁸ + q²⁴⁶ - q¹⁸⁰ - q¹⁷⁰ + q¹¹⁶ + q¹⁰⁸ - q⁶⁶ - q⁶⁰)
+ q³⁰ + q²⁶ - q⁸ - q⁶ + 1)
 $\sqrt{-2 q^{567} + 2 q^{448} - 2 q^{343} + 2 q^{252} - 2 q^{175} + 2 q^{112} - 2 q^{63} + 2 q^{28} - 2 q7 + 1)$

It seems that the *q*-series

$$\sum_{n=0}^{\infty} \frac{q^{\frac{n(n+1)}{2}}(-q;q)_{n}}{(q,q)_{2n+1}}$$

can be written as Jacobi-type product. Assuming that this is the case we used **jac2series** to write this *q*-series in terms of theta-series at least up to q^{500} . This should provide an efficient method for computing the *q*-series expansion and also for computing the function at particular values of *q*.

EXERCISE 5. Use jacprodmake and jac2series to compute the *q*-series expansion of
$$\sum_{n=0}^{\infty} \frac{q \qquad (-q;q)}{(q,q)_{2n+1}}$$

up to q^{1000} , assuming it is Jacobi-type product. Can you identify the infinite product? This function occurs in Slater's list [36, Eq.(46), p.156].

4. The Search for Relations

4.1 findhom

If the *q*-series one is concerned with are modular forms of a particular weight, then theoretically these functions will satisfy homogeneous polynomial relations. See [18, p. 263], for more details and examples.

The function findhom (L,q,n,topshift) returns a set of potential homogeneous relations of order *n* among the *q*-series in the list L. The value of **topshift** is usually taken to be zero. However if it appears that spurious relations are being generated then a higher value of **topshift** should be taken.

The idea is to convert this into a linear algebra problem. This program generates a list of monomials of

degree *n* of the functions in the given list of *q*-series L. The *q*-expansion (up to a certain point) of each monomial is found and converted into a row vector of a matrix. The set of relations is then found by computing the kernel of the transpose of this matrix. As an example, we now consider relations between the theta functions $\theta_3(q)$, $\theta_4(q)$, $\theta_3(q^2)$, and $\theta_3(q^2)$.

> with(qseries):
> findhom([theta3(q,100),theta4(q,100),theta3(q^2,100),theta4(q^2,
100)],q,1,0);

{Ø} (17)
> findhom([theta3(q,100),theta4(q,100),theta3(q^2,100), theta4(q^2,
100)],q,2,0);

$$\left\{-X_1 X_2 + X_4^2, X_1^2 + X_2^2 - 2 X_3^2\right\}$$
(18)

From the session above we see that there is no linear relation between the functions $\theta_3(q)$, $\theta_4(q)$, $\theta_3(q^2)$, and $\theta_3(q^2)$. However, it appears that there are two quadratic relations:

$$\theta_{3}(q^{2}) = \sqrt{\frac{\theta_{3}(q)^{2} + \theta_{4}(q)^{2}}{2}},$$

and

$$\theta_4(q^2) = \sqrt{\theta_3(q)^2 \theta_4(q)^2}.$$

This is Gauss' parametrization of the arithmetic-geometric mean iteration. See [13, Ch 2] for details.

EXERCISE 6.

Define a(q), b(q), c(q) as in Exercise 2.

Find homogeneous relations between the functions $a(q), b(q), c(q), a(q^3), b(q^3), c(q^3)$.

In particular, try to get $a(q^3), b(q^3)$ and in terms of a(q), b(q). See [12] for more details. These results lead to a cubic analog of the AGM due to Jon and Peter Borwein [10], [11].

4.2 findhomcombo

The function findhomcombo is a variant of findhom. Suppose f is a q-series and L is a list of q-series. findhomcombo (f,L,q,n,topshift,etaoption) tries to express f as a homogeneous polynomial in the members of L.

If **etaoption=yes** then each monomial in the combination is *converted* into an eta-product using **etamake**.

We illustrate this function with certain Eisenstein series. For *p* an odd prime define

 $\chi(m) = \left(\frac{m}{p}\right) \qquad \text{(the Legendre symbol).}$ Suppose k is an integer, $k \ge 2$, and $\frac{(p-1)}{2} \equiv k \pmod{2}$.

Define the Eisenstein series

$$U_{p,k}(q) := \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \chi(m) n^{k-1} q^{mn}.$$

Then $U_{p,k}(q)$ is a modular form of weight *k* and character χ for the congruence subgroup $\Gamma_0(p)$. See [28], [20] for more details. The classical result is the following identity found by Ramanujan [32, Eq. (1.52), p. 354]:

$$U_{5,2} = \frac{\eta(5\tau)^5}{\eta(\tau)}.$$

Kolberg [28] has found many relations between such Eisenstein series and certain eta products. The eta function $\eta(\tau)$ is a modular form of weight [27, p.121]. Hence the modular forms

$$B_1 \coloneqq \frac{\eta(5\tau)^5}{\eta(\tau)}, \quad B_2 \coloneqq \frac{\eta(\tau)^5}{\eta(5\tau)}$$

are modular forms of weight 2. In fact, it can be shown that they are modular forms on $\Gamma_0(p)$ with character $\left(\frac{\cdot}{5}\right)$. We might therefore expect that $U_{5, 6}$ can be written as a homogeneous cubic polynomial in B_1 and B_2 . We write a short maple program to compute the Eisenstein series.

$$\begin{cases} \Rightarrow \text{ with (numtheory):} \\ & \text{UE:=proc}(q,k,p,trunk) \\ & \text{local } x,m,n; \\ & x:=0; \\ & \text{for m from 1 to trunk/m do} \\ & & \text{for n from 1 to trunk/m do} \\ & & x:=x + \text{legendre}(m,p)*n^{(k-1)*q^{(m*n):}} \\ & \text{od:} \\ & \text{od:} \\ & \text{end:} \\ & \text{The function UE}(q,k,p,trunk) \text{ returns the q-expansion of up through .} \\ & \text{We note that legendre}(m,p) \text{ returns the Legendre symbol}\left(\frac{m}{p}\right). \\ & \text{We are now ready to study.} \\ & \text{with (qseries):} \\ & \text{f := UE}(q,6,5,50): \\ & \text{B1 := etaq}(q,1,50)^{5/etaq}(q,5,50): \\ & \text{B2 := q*etaq}(q,5,50)^{5/etaq}(q,1,50): \\ & \text{ findhomcombo}(f, [B1,B2],q,3,0,yes); \\ & \left\{\eta(5\tau)^{3}\eta(\tau)^{9} + 40\eta(5\tau)^{9}\eta(\tau)^{3} + \frac{335\eta(5\tau)^{15}}{\eta(\tau)^{3}}\right\} \\ & \left\{X_{1}^{2}X_{2} + 40X_{1}X_{2}^{2} + 335X_{2}^{3}\right\} \end{aligned}$$
(19)

our appear th

$$U_{5,6} = \eta (5\tau)^{3} \eta (\tau)^{9} + 40 \eta (5\tau)^{9} \eta (\tau)^{3} + \frac{335 \eta (5\tau)^{15}}{\eta (\tau)^{3}}$$

The proof is a straightforward exercise using the theory of modular forms.

EXERCISE 7.

_Define the following eta products:

$$C_1 \coloneqq \frac{\eta(7\tau)^{\gamma}}{\eta(\tau)}, \quad C_2 \coloneqq \eta(\tau)^3 \eta(7\tau)^3, \quad C_3 \coloneqq \frac{\eta(\tau)^{\gamma}}{\eta(7\tau)}$$

What is the weight of these modular forms? Write $U_{7,3}$ in terms of C_1, C_2, C_3 . The identity that you should find was originally due to Ramanujan. Also see Fine [15, p. 159] and [19, Eq. (5.4)].

If you are ambitious find $U_{7,9}$ in terms of C_1, C_2, C_3 .

4.3 findnonhom

In section 4.1 we introduced the function **findhom** to find homogeneous relations between q-series. The nonhomogeneous analog is **findnonhom**.

The syntax of **findnonhom** is the same as **findhom**.

Typically (but not necessarily) **findhom** is used to find relations between modular forms of a certain weight. To find relations between modular functions we would use **findnonhom**. We consider an example involving theta functions.

> with (qseries):
> F := q -> theta3 (q,500) / theta3 (q^5,100):
> U := 2*q*theta (q^10, q^25, 5) / theta3 (q^25,20);
$$U := \frac{2 q \left(q^{675} + q^{575} + q^{440} + q^{360} + q^{255} + q^{195} + q^{120} + q^{80} + q^{35} + q^{15} + 1\right)}{2 q^{625} + 2 q^{400} + 2 q^{225} + 2 q^{100} + 2 q^{25} + 1}$$
(20)
> EQNS := findnonhom([F(q), F(q^5), U], q, 3, 20);
of terms, 61
-----RELATIONS----of order---, 3
EQNS := $\left\{-X_1 X_2 X_3 + X_2^2 + X_3^2 + X_3 - 1\right\}$ (21)
> ANS := EQNS[1];
ANS := $-X_1 X_2 X_3 + X_2^2 + X_3^2 + X_3 - 1$ (22)
> CHECK := subs({X[1]=F(q), X[2]=F(q^5), X[3]=U}, ANS):
> series(CHECK, q, 500);
We define

$$F(q) := \frac{\theta_3(q)}{\theta_3(q^5)}$$

_and

$$U(q) := \frac{\sum_{n=-\infty}^{\infty} q^{25n^2 + 10n + 1}}{\theta_3(q^{25})}.$$

We note that U(q) and F(q) are modular functions since they are ratios of theta series. From the session above we see that it appears that

$$1 + F(q) F(q^5) U(q) = F(q^5)^2 + U(q)^2 + U(q).$$

Observe how we were able to verify this equation to high order. When **findnonhom** returns a set of relations the variable X has been declared *global*. This is so we can manipulate the relations. It this way we were able to assign **ANS** to the relation found and then use **subs** and **series** to check it to order $O(q^{500})$.

4.4 findnonhomcombo

The syntax of **findnonhomcombo** is the same as **findhomcombo**. We consider an example involving eta functions. First we define

$$\xi := \frac{\eta(49\,\tau)}{\eta(\tau)}$$

and

T :=	(<u>η(</u> 7τ)	_)4
	$\int \eta(\tau)$) .

Using the theory of modular functions it can be shown that one must be able to write T^2 in terms of T and powers of ξ . We now use **findnonhomcombo** to get T^2 in terms of T and ξ . **with (gseries)**:

> xi:=series(q^2*etaq(q,49,100)/etaq(q,1,100),q,101): > T:=series(q*(etaq(q,7,100)/etaq(q,1,100))^4,q,101): > findnonhomcombo(T^2,[T,xi],q,[1,7],0,no);

of terms , 37

matrix is, 17, *x*, 37

-----possible linear combinations of degree-----, n

$$\left[343 X_{2}^{\prime}+343 X_{2}^{6}+147 X_{2}^{5}+49 X_{1} X_{2}^{3}+49 X_{2}^{4}+35 X_{1} X_{2}^{2}+21 X_{2}^{3}+7 X_{1} X_{2}+7 X_{2}^{2}+X_{2}\right]$$
(24)

$$\left(49 X_{2}^{3}+35 X_{2}^{2}+7 X_{2}\right) X_{1}+343 X_{2}^{7}+343 X_{2}^{6}+147 X_{2}^{5}+49 X_{2}^{4}+21 X_{2}^{3}+7 X_{2}^{2}+X_{2}$$
(25)

_Then it seems that

$$T^{2} = (49\xi^{3} + 35\xi^{2} + 7\xi) T + 343\xi^{7} + 343\xi^{6} + 147\xi^{5} + 49\xi^{4} + 21\xi^{3} + 7\xi^{2} + \xi.$$

This is the modular equation used by Watson [41] to prove Ramanujan's partition congruences for powers of 7. Also see [5] and [26], and see [16] for an elementary treatment.

EXERCISE 8. Define

$$\xi \coloneqq \frac{\eta(25\tau)}{\eta(\tau)}$$

_and

$$T := \left(\frac{\eta(5\tau)}{\eta(\tau)}\right)^6.$$

Use **findnonhomcombo** to express T as a polynomial in ξ of degree 5. The modular equation you find was used by Watson to prove Ramanujan's partition congruences for powers of 5. See [23] for an elementary treatment.

EXERCISE 9. Define a(q) and c(q) as in **Exercise 2**. Define

$$x(q) \coloneqq \frac{c(q)^3}{a(q)^3},$$

and the classical Eisenstein series (usually called E_6 ; see [35, p. 93])

$$N(q) := 1 - 504 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n}.$$

Use **findnonhomcombo** to express N(q) in terms of a(q) and x(q). *HINT*: N(q) is a modular form of weight 6 and a(q) and c(q) are modular forms of weight 1. See [8] for this result and many others.

4.5 findpoly

The function **findpoly** is used to find a polynomial relation between two given *q*-series with degrees _specified.

findpoly(x,y,q,deg1,deg2,check)

returns a possible polynomial in X, Y (with corresponding degrees deg1, deg2) which is satisfied by the q-series x and y.

If **check** is assigned then the relation is checked to $O(q^{check})$.

We illustrate this function with an example involving theta functions and the function a(q) and c(q) encountered in **Exercises 2** and 7. It can be shown that

$$a(q) = \theta_3(q)\theta_3(q^3) + \theta_2(q)\theta_2(q^3).$$

See [12] for details. This equation provides a better way of computing the q-series expansion of a(q) than the definition. In **Exercise 2** you would have found that

$$c(q) = 3 \frac{\eta(3\tau)^3}{\eta(\tau)}.$$

See [12] for a proof. Define

$$y \coloneqq \frac{c^3}{a^3}$$

_and

$$x := \left(\frac{\theta_2(q)}{\theta_2(q^3)}\right)^2 + \left(\frac{\theta_3(q)}{\theta_3(q^3)}\right)^2.$$

We use findpoly to find a polynomial relation between x and y.
> with (qseries):
> x1 := radsimp(theta2(q,100)^2/theta2(q^3,40)^2):
> x2 := theta3(q,100)^2/theta3(q^3,40)^2:
> x := x1+x2:
> c := q*etaq(q,3,100)^9/etaq(q,1,100)^3:
> a := radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2(q^3,40)):
> c := 3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100):
> y := radsimp(c^3/a^3):

> P1:=findpoly(x,y,q,3,1,60); WARNING: X,Y are global.

$$dims, 8, 18$$
The polynomial is
$$(X+6)^{3} Y-27 (X+2)^{2}$$
Checking to order, 60
$$O(q^{59})$$
P1 := $(X+6)^{3} Y-27 (X+2)^{2}$
(26)

It seems that x and y satisfy the equation

$$p(x, y) = (x+6)^{3} y - 27 \cdot (x+2)^{2} = 0.$$

Therefore it would seem that

$$\frac{c^3}{a^3} = \frac{27 \cdot (x+2)^2}{(x+6)^3}$$

See [8, pp. 4237-4240] for more details.

EXERCISE 10. Define

$$m := \left(\frac{\theta_3(q)}{\theta_3(q^3)}\right)^2.$$

Use **polyfind** to find $y = \frac{c^3}{a^3}$ as a rational function in *m*. The answer is Eq.(12.8) in [8].

5. Sifting coefficients

_Suppose we are given a *q*-series

$$A(q) = \sum_{n=0}^{\infty} a_n q^n.$$

Occasionally it will turn out the generating function

$$\sum_{n=0}^{\infty} a_{mn+r} q^n.$$

will have a very nice form. A famous example for p(n) is due to Ramanujan:

$$\sum_{n=0}^{\infty} p(5n+4) q^{n} = 5 \prod_{n=1}^{\infty} \frac{\left(1-q^{5n}\right)^{6}}{\left(1-q^{n}\right)^{5}}.$$

See [1, Cor. 10.6]. In fact, G.H. Hardy and Major MacMahon [31, p. xxxv] both agreed that this is Ramanujan's most beautiful identity. Suppose *s* is the *q*-series

 $\sum_{i} a_{i} q^{i} + O(q^{T})$

then sift(s,q,n,k,T) returns the q-series

$$\sum_{i} a_{ni+k} q^{i} + O\left(q^{\frac{1}{n}}\right)$$

T

We illustrate this function with another example from the theory of partitions. Let pd(n) denote the number of partitions of n into distinct parts. Then it is well known that

$$\sum_{n=0}^{\infty} pd(n) q^{n} = \prod_{n=1}^{\infty} (1+q^{n}) = \prod_{n=1}^{\infty} \frac{(1-q^{2n})}{(1-q^{n})}.$$

We now examine the generating function of
$$pd(5 n + 1)$$
 in MAPLE.
> with (qseries):
> PD:=series (etaq(q,2,200)/etaq(q,1,200),q,200):
> PD1:=sift(PD,q,5,1,199);
PD1:= 382075868 q^{39} + 281138048 q^{38} + 206084096 q^{37} + 150473568 q^{36} (27)
+ 109420549 q^{35} + 79229676 q^{34} + 57114844 q^{33} + 40982540 q^{32} + 29264960 q^{31}
+ 20792120 q^{30} + 14694244 q^{29} + 10327156 q^{28} + 7215644 q^{27} + 5010688 q^{26}
+ 3457027 q^{25} + 2368800 q^{24} + 1611388 q^{23} + 1087744 q^{22} + 728260 q^{21} + 483330 q^{20}
+ 317788 q^{19} + 206848 q^{18} + 133184 q^{17} + 84756 q^{16} + 53250 q^{15} + 32992 q^{14}
+ 20132 q^{13} + 12076 q^{12} + 7108 q^{11} + 4097 q^{10} + 2304 q^9 + 1260 q^8 + 668 q^7 + 340 q^6
+ 165 q^5 + 76 q^4 + 32 q^3 + 12 q^2 + 4 q + 1
> etamake (PD1,q,38);

$$\frac{\eta(5\tau)^3 \eta(2\tau)^2}{q^{5/24} \eta(10\tau) \eta(\tau)^4}$$
(28)

So it would seem that

$$\sum_{n=0}^{\infty} pd(5n+1) q^{n} = \prod_{n=1}^{\infty} \frac{\left(1-q^{5n}\right)^{3} \left(1-q^{2n}\right)^{2}}{\left(1-q^{10n}\right) \left(1-q^{n}\right)^{4}}.$$

This result was found originally by Rodseth [33].

EXERCISE 11. Rodseth also found the generating functions for pd(5 n + r) for r = 0, 1, 2, 3, and 4. For

each r use **sift** and **jacprodmake** to identify these generating functions as infinite products.

6. Product Identities

At present, the package contains the Triple Product identity, the Quintuple Product identity and Winquist's identity. These are the most commonly used of the Macdonald identities [30], [37], [38]. The Macdonald identities are the analogs of the Weyl denominator for affine roots systems. Hopefully, a later version of this package will include these more general identities.

6.1 The Triple Product Identity

The triple product identity is

$$\sum_{n=-\infty}^{\infty} (-1)^n z^n q^{\frac{n(n-1)}{2}} = \prod_{n=1}^{\infty} (1 - zq^{n-1}) (1 - z^{-1}q^n) (1 - q^n).$$
(6.1)

where $z \neq 0$ and |q| < 1. The Triple Product Identity is originally due to Jacobi [24,Vol I]. The first combinatorial proof of the triple product identity is due to Sylvester [39]. Recently, Andrews [3] and Lewis [29] have found nice combinatorial proofs. The triple product occurs frequently in the theory of partitions. For instance, most proofs of the Rogers-Ramanujan identity crucially depend on the triple product identity.

tripleprod (z, q, T) returns the q-series expansion to order $O(q^T)$ of Jacobi's triple product (6.1). This expansion is found by simply truncating the right side of (6.1).

> tripleprod(z,q,10);

$$\frac{q^{21}}{z^6} - \frac{q^{15}}{z^5} + \frac{q^{10}}{z^4} - \frac{q^6}{z^3} + \frac{q^3}{z^2} - \frac{q}{z} + 1 - z + z^2 q - z^3 q^3 + z^4 q^6 - z^5 q^{10} + z^6 q^{15}$$
(29)

> tripleprod (q, q^3, 10);

$$q^{57} + q^{51} - q^{40} - q^{35} + q^{26} + q^{22} - q^{15} - q^{12} + q^7 + q^5 - q^2 - q + 1$$
(30)

The last calculation is an illustration of Euler's Pentagonal Number Theorem [1, Cor. 1.7 p.11]:

$$\prod_{n=1}^{\infty} (1-q^n) = \prod_{n=1}^{\infty} (1-q^{3n-1})(1-q^{3n-2})(1-q^{3n}) = \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(3n-1)}{2}}$$
(6.2)

6.2 The Quintuple Product Identity

The following identity is the Quintuple Product Identity:

$$\left(-z; q \right)_{\infty} \left(-qz^{-1}; q \right)_{\infty} \left(z^{2}q; q^{2} \right)_{\infty} \left(z^{-2}q; q^{2} \right)_{\infty} (q; q)_{\infty} = \sum_{n=-\infty}^{\infty} \left((-z)^{-3n} - (-z)^{3n+1} \right) \frac{n!(3n+1)}{q} \frac{n!(3n+1)}{2}$$
(6.3)
Here |q|<1 and $z \neq 0$. This identity is the BC_{1} case of the Macdonald identities [30].
The quintuple product identity is usually attributed to Watson [40]. However it can be found in Ramanujan's lost notebook [32, p. 207]. Also see [7] for more history and some proofs.
The function quinprod (z, q, T) returns the quintuple product identity in different forms:
(i) If T is a positive integer it returns the q-expansion of the right side of (6.3) to order $O(q^{T})$
(ii) If T - prodid then quinprod (z, q, prodid) returns the quintuple product identity in product identity in series form.
(iii) If T - prodid then quinprod ($z, q, \text{precised}$) returns the quintuple product identity in series form.
(iii) If T - stretistic then quinprod ($z, q, \text{seriesid}$) returns the quintuple product identity in series form.
(iii) If T - stretistic then quinprod ($z, q, q, \text{seriesid}$) returns the quintuple product identity in series form.
(iii) a series form.
(iii) If T - stretistic then quinprod ($z, q, q, \text{seriesid}$) returns the quintuple product identity in series form.
(iii) $q^{3}_{n} = \left(\left(-\frac{q}{2}, q \right)_{\infty} + \left(\frac{q^{2}}{2^{3}}, q^{2} \right)_{\infty} + \left((q, q)_{\infty} = z + \left(\frac{q}{2^{3}}, q^{3} \right)_{\infty} + \left(q^{2} z^{3}, - (31) - (-z, q)_{\infty} + \left(-\frac{q}{2}, q \right)_{\infty} + \left(\frac{2}{2^{3}}, q^{2} \right)_{\infty} + \left((q, q)_{\infty} = \sum_{m=-\infty}^{\infty} ((-z)^{-3m} - (-(32) - (-z, q)_{\infty})^{-1} \left(-\frac{q}{2}, q \right)_{\infty} + \left(\frac{2}{2^{3}}, q^{2} \right)_{\infty} + \left((q, q)_{\infty} = \sum_{m=-\infty}^{\infty} ((-z)^{-3m} - (-(32) - (-z, q)_{\infty})^{-1} \left(-\frac{q}{2^{3}}, q \right)_{\infty} + \left(-\frac{1}{2^{3}}, q^{2} \right)_{\infty}$

> E0:=sift(EULER,q,5,0,499);

$$E0 := q^{99} - q^{85} - q^{69} - q^{66} - q^{52} + q^{42} + q^{31} + q^{29} + q^{20} - q^{14} - q^8 - q^7 - q^3 + q + 1 \quad (34)$$
> jp:=jacprodmake(E0,q,50);

$$jp := \frac{JAC(2,5,\infty) JAC(0,5,\infty)}{JAC(1,5,\infty)} \quad (35)$$
> jac2prod(jp);

$$\frac{\cdot \cdot (q^5, q^5)_{\infty} \cdot \cdot (q^2, q^5)_{\infty} \cdot \cdot (q^3, q^5)_{\infty}}{\cdot \cdot (q, q^5)_{\infty} \cdot \cdot (q^4, q^5)_{\infty}} \quad (36)$$

> qp:=quinprod(q,q^5,20):
> series(qp,q,100);

$$1 + q - q^{3} - q^{7} - q^{8} - q^{14} + q^{20} + q^{29} + q^{31} + q^{42} - q^{52} - q^{66} - q^{69} - q^{85} + O(q^{99})$$
(37)

From our maple session it appears that

$$E_{0} = \frac{(q^{5}; q^{5})_{\infty} (q^{2}; q^{5})_{\infty} (q^{3}; q^{5})_{\infty}}{(q; q^{5})_{\infty} (q^{4}; q^{5})_{\infty}}$$
(6.4)

and that this product can be gotten by replacing q by q^5 and z by q in the product side of the quintuple product identity (6.3).

EXERCISE 12. (i) Use the quintuple product identity (6.3) and Euler's pentagonal number theorem

to prove (6.4).

(ii) Use MAPLE to identify and prove product expressions for E_1 and E_2 .

(iii) This time see if you can repeat (i), (ii) but split the exponent mod 7.

(iv) Can you generalize these results to arbitrary modulus? Atkin and Swinnerton-Dyer found a generalization. See Lemma 6 in [6].

6.3 Winquist's Identity

_Back in 1969, Lasse Winquist [43] discovered a remarkable identity

$$(a;q)_{\infty} (a^{-1}q;q)_{\infty} (b;q)_{\infty} (b^{-1}q;q)_{\infty} (ab;q)_{\infty} ((ab)^{-1}q;q)_{\infty} (ab^{-1};q)_{\infty} (a^{-1}bq;q)_{\infty} (q;q)_{\infty}^{2}$$

$$= \sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} (-1)^{n+m} ((a^{-3n}-a^{3n+3})(b^{-3m}-b^{3m+1}) + (a^{-3m+1}-a^{3m+2})(b^{3n+2}-b^{3m+1}) + (a^{-3m+1}-a^{3m+2})(b^{3n+2}-b^{-3m-1})(a^{-3m+1}-a^{-2m+1}) + (a^{-3m+1}-a^{-2m+1})(b^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1}) + (a^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1}) + (a^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1}) + (a^{-2m+1}-a^{-2m+1})(a^{-2m+1}-a^{-2m+1$$

By dividing both sides by (1-a)(1-b) and letting $a, b \to 1$ he was able to express the product

$$\prod_{n=1}^{\infty} \left(1-q^n\right)^{10}$$

as a double series and prove Ramanujan's partition congruence $p(11 n + 6) \equiv 0 \pmod{11}.$

This was probably the first truly elementary proof of Ramanujan's congruence modulo 11. The interested

reader should see Dyson's article [14] for some fascinating history on identities for powers of the Dedekind

eta function and how they led to the Macdonald identities. A new proof of Winquist's identity has been

found recently by S.-Y. Kang [25]. Mike Hirschhorn [22] has found a four-parameter generalization of

Winquist's identity.

The function **winquist(a,b,q,T)** returns the q-expansion of the right side of (6.5) to order $O(q^T)$.

We close with an example. For 1 < k < 33 define $Q(k) := \left(q^{k}; q^{33}\right)_{\infty} \left(q^{33-k}; q^{33}\right)_{\infty} \left(q^{33}; q^{33}\right)_{\infty}.$ Now define the following functions: $A_0 = Q(15), A_3 = Q(12), A_7 = Q(6), A_8 = Q(3), A_9 = Q(9).$ $B_0 = Q(16) - q^2 Q(5),$ $B_1 = Q(14) - qQ(8),$ $B_2 = Q(13) - q^3 Q(2),$ $B_A = Q(7) + qQ(4),$ $B_7 = Q(10) + q^3 Q(1).$ These functions occur in Theorem 6.7 of [17] as well as the function $A_0B_2 - q^2A_0B_4$. > with(gseries): > Q:=n->tripleprod(q^n,q^33,10): > A0:=Q(15): A3:=Q(12): A7:=Q(6):> A8:=Q(3): A9:=Q(9):> B2:=Q(13)-q^3*Q(2): B4:=Q(7)+q*Q(4):> IDG:=series((A0*B2-q^2*A9*B4),q,200): > series(IDG,q,10); $1 - q^2 - 2q^3 + q^5 + q^7 + q^9 + O(q^{11})$ (38) > jp:=jacprodmake(IDG,q,50); $jp := \frac{JAC(2, 11, \infty) JAC(3, 11, \infty)^2 JAC(5, 11, \infty)}{JAC(0, 11, \infty)^2}$ (39) > jac2prod(jp); $(q^{2}, q^{11})_{\infty} \cdot (q^{9}, q^{11})_{\infty} \cdot (q^{11}, q^{11})_{\infty}^{2} \cdot (q^{3}, q^{11})_{\infty}^{2} \cdot (q^{8}, q^{11})_{\infty}^{2} \cdot (q^{5}, q^{11})_{\infty} \cdot (q^{6}, q^{6}, q^{6}, q^{6}, q^{6}, q^{6}, q^{6})$ (40) a^{11})...

> series (winquist (q⁵, q³, q¹¹, 20), q, 20);

$$1 - q^2 - 2q^3 + q^5 + q^7 + q^9 + q^{11} + q^{12} - q^{13} - q^{15} - q^{16} - q^{18} + O(q^{20})$$
(41)

> series (IDG-winquist (q^5, q^3, q^11, 20), q, 60);

$$O(q^{49})$$
(42)

From our maple session it seems that

$$A_{0}B_{2} - q^{2}A_{9}B_{4} = (q^{2};q^{11})_{\infty} (q^{9};q^{11})_{\infty} (q^{11};q^{11})_{\infty}^{2} (q^{3};q^{11})_{\infty}^{2} (q^{8};q^{11})_{\infty}^{2} (q^{5};q^{11})_{\infty} (q^{6};q^{11})_{\infty}$$

(6.6)

and that this product appears in Winquist's identity on replacing $_{=}q$ by q^{11} and letting $a = q^5$ and $b = q^3$.

EXERCISE 13.

(i) Prove (6.6) by using the triple product identity (6.1) to write the right side of Winquist's identity (6.5) as a sum of two products.

(ii) In a similar manner find and prove a product form for

$$A_0 B_0 - q^3 A_7 B_4.$$

REFERENCES

- [1]George E. Andrews. The theory of partitions. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2.
- [2]George E. Andrews. Partitions: yesterday and today, With a foreword by J. C. Turner. New Zealand Math. Soc., Wellington, 1979.

[3]George E. Andrews. Generalized Frobenius partitions. Mem. Amer. Math. Soc., 49(301):iv+44, 1984.

[4]George E. Andrews. q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra. Published for the Conference Board of the Mathematical Sciences, Washington, D.C., 1986.

- [5]A. O. L. Atkin. Ramanujan congruences for pk (n). Canad. J. Math. 20 (1968), 67-78; corrigendum, ibid., 21:256, 1968.
- [6]A. O. L. Atkin and H. P. F. Swinnerton-Dyer. Some properties of partitions. Proc. London Math. Soc., 4:84-106, 1954.
- [7]Bruce C. Berndt. Ramanujan's theory of theta-functions. In Theta functions: from the classical to the modern, volume 1 of CRM Proc. Lecture Notes, pages 1-63. Amer. Math. Soc., Providence, RI, 1993.
- [8]Bruce C. Berndt, S. Bhargava, and Frank G. Garvan. Ramanujan's theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc., 347(11): 4163-4244, 1995.
- [9]J. Borwein, P. Borwein, and F. Garvan. Hypergeometric analogues of the arithmetic-geometric mean iteration. Constr. Approx., 9(4):509-523, 1993.
- [10]J. M. Borwein and P. B. Borwein. A remarkable cubic mean iteration. In Computational methods and function theory (Valparaiso, 1989), volume 1435 of Lecture Notes in Math., pages 27-31. Springer, Berlin, 1990.
- [11]J. M. Borwein and P. B. Borwein. A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer. Math. Soc., 323(2):691-701, 1991.

- [12]J. M. Borwein, P. B. Borwein, and F. G. Garvan. Some cubic modular identities of Ramanujan. Trans. Amer. Math. Soc., 343(1):35-47, 1994.
- [13]Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1987. A study in analytic number theory and computational complexity, A Wiley-Interscience Publication.
- [14]Freeman J. Dyson. Missed opportunities. Bull. Amer. Math. Soc., 78:635-652, 1972.
- [15]N. J. Fine. On a system of modular functions connected with the Ramanujan identities. Tohoku Math. J. (2), 8:149-164, 1956.
- [16]F. G. Garvan. A simple proof of Watson's partition congruences for powers of 7. J. Austral. Math. Soc. Ser. A, 36(3):316-334, 1984.
- [17]F. G. Garvan. New combinatorial interpretations of Ramanujan's partition congruences mod 5; 7 and 11. Trans. Amer. Math. Soc., 305(1):47-77, 1988.
- [18]Frank Garvan. Cubic modular identities of Ramanujan, hypergeometric functions and analogues of the arithmetic-geometric mean iteration. In The Rademacher legacy to mathematics (University Park, PA, 1992), volume 166 of Contemp. Math., pages 245-264. Amer. Math. Soc., Providence, RI, 1994.
- [19]Frank Garvan, Dongsu Kim, and Dennis Stanton. Cranks and t-cores. Invent. Math., 101(1):1-17, 1990.
- [20]Frank G. Garvan. Some congruences for partitions that are p-cores. Proc. London Math. Soc. (3), 66(3):449-478, 1993.
- [21]Andrew Granville and Ken Ono. Defect zero p-blocks for finite simple groups. Trans. Amer. Math. Soc., 348(1):331-347, 1996.
- [22]Michael D. Hirschhorn. A generalisation of Winquist's identity and a conjecture of Ramanujan. J. Indian Math. Soc. (N.S.), 51:49-55 (1988), 1987.
- [23]Michael D. Hirschhorn and David C. Hunt. A simple proof of the Ramanujan conjecture for powers of 5. J. Reine Angew. Math., 326:1-17, 1981.
- [24]C. G. J. Jacobi. Gesammelte Werke. Bande I-VIII. Chelsea Publishing Co., New York, 1969. Herausgegeben auf Veranlassung der Koniglich Preussischen Akademie der Wissenschaften. Zweite Ausgabe.
- [25]Soon-Yi Kang. A new proof of Winquist's identity. J. Combin. Theory Ser. A, 78(2):313-318, 1997.
- [26]Marvin I. Knopp. Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill., 1970.
- [27]Neal Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.
- [28]O. Kolberg. Note on the Eisenstein series of fl0 (p). Arbok Univ. Bergen Mat.-Natur. Ser., 1968(6):20 pp. (1969), 1968.
- [29]R. P. Lewis. A combinatorial proof of the triple product identity. Amer. Math. Monthly, 91(7):420-423, 1984.
- [30]I. G. Macdonald. Affine root systems and Dedekind's j-function. Invent. Math., 15:91-143, 1972.
- [31]S. Ramanujan. Collected papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York, 1962. Edited with notes by G. H. Hardy, P. V. Sesu Aiyar and B. M. Wilson.
- [32]Srinivasa Ramanujan. The lost notebook and other unpublished papers. Springer-Verlag, Berlin, 1988. With an introduction by George E. Andrews.
- [33]Oystein Rodseth. Dissections of the generating functions of q(n) and q0(n). A_rbok Univ. Bergen Mat.-Natur. Ser., (12):12 pp. (1970), 1969.
- [34]L. J. Rogers. Second memoir on the expansion of certain infinite products.

Proc. London Math. Soc., 25:318-343, 1894.

- [35]J.-P. Serre. A course in arithmetic. Springer-Verlag, New York, 1973. Translated from the French, Graduate Texts in Mathematics, No. 7.
- [36]L. J. Slater. Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc., 54:147-167, 1952.
- [37]Dennis Stanton. Sign variations of the Macdonald identities. SIAM J. Math. Anal., 17(6):1454-1460, 1986.
- [38]Dennis Stanton. An elementary approach to the Macdonald identities. In qseries and partitions (Minneapolis, MN, 1988), volume 18 of IMA Vol. Math. Appl., pages 139-149. Springer, New York, 1989.
- [39]J. J. Sylvester. A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math., 5:251-331, 1882.
- [40]G. N. Watson. Theorems stated by Ramanujan (vii): Theorems on continued fractions. J. London Math. Soc., 4:39-48, 1929.
- [41]G. N. Watson. Ramanujans Vermutunguber Zerfallungsanzahlen. J. Reine Angew. Math., 179:97-128, 1938.
- [42]E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition.
- [43]Lasse Winquist. An elementary proof of p(11m + 6) j 0 (mod 11). J. Combinatorial Theory, 6:56-59, 1969.