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1. Introduction.
In the study of q-series one is quite often interested in identifying generating functions as infinite 
products. The classic example is  the Rogers-Ramanujan identity: 

Here we have used the notation in (2.2).  It can be shown that the left-side of this identity is the
generating function for partitions whose parts differ by at least two. The identity is equivalent to saying
the number of such partitions of n is equinumerous with partitions of n into parts congruent to

 (mod 5).

The main goals of the package are to provide facility for handling the  following problems.
1.   Conversion of a given q-series into  an infinite product.
2.   Factorization of a given rational function into a finite q-product if one exists.
3.   Find algebraic relations (if they exist) among the q-series in a given list.

A q-product has the form

where are integers.

In    [4,  section 10.7], George Andrews also considered Problems 1 and 2, and asked for an 
easily accessible  implementation. We provide implementations as well as considering
factorisations into theta-products and eta-products. The package provides some basic functions for 
computing q-series expansions of eta functions, theta functions, Gaussian polynomials and q-products.
It also has a function for sifting out coefficients of a q-series. It also has the basic infinite product
identities: the triple product identity, the quintuple product identity and Winquist's identity.

1.1 Installation instructions.
The qseries package can be downloadedvia the WWW. First use your favorite browser to access the
URL:    https://qseries.org/fgarvan/qmaple/qseries/index.html  



 Then you can find directions for installing the package.

2. Basic functions

We describe the basic functions in the package which are used to build q-series.

2.1. Finite q-products
2.1.1. Rising q-factorial
aqprod(a,q,n)  returns the product

                            (1.2)

We also use the notation

.

2.1.2 Gaussian polynomials
When  ,   qbin(q,m,n)  returns the Gaussian  polynomial (or q-binomial coefficient)

otherwise it returns 0.

2.2 Infinite products
2.2.1 Dedekind eta products
Suppose   >0, and  . The Dedekind eta function [27, p.121] is defined by

etaq(q,k,T)  returns the q-series expansion (up to ) of the eta product

This corresponds to the eta function    except for a power of q. Eta products occur frequently in 
the study of q-series. For example, the generating function for , the number of partitions of n, can 
be written as

See  [1, pp. 3-4].  The generating function for the number of partitions of n that are p-cores  [19], 
, can be written



Granville and Ono  [21]  proved a long-standing conjecture in group 
representation theory using elementary and function-theoretic properties of the eta product above.

2.2.2. Theta functions
Jacobi  [24, Vol I, pp. 497--538] defined four theta functions   , i=1,2,3,4.
See also  [41, Ch. XXI].  Each theta function can be written in terms of the others using a simple  
change of variables. For this reason, it is common to define

theta(z,q,T) returns the truncated theta-series                    

The case  of Jacobi's theta functions occurs quite frequently. We define

,

theta2(q,T),  theta3(q,T),  theta4(q,T) (resp.) returns the q-series expansion to
order   of  ,  respectively. 

Let a, and b be positive integers and suppose |q|<1.   Infinite products of the form

occur quite frequently in the theory of partitions and q-series.  For example the right side of the 
Rogers-Ramanujan identity is the reciprocal of the product with 
In  (3.4) we will see how the function  jacprodmake  can be used to identify such products.

3. Product Conversion.

In [1, p. 233],  [3, section 10.7] there is a very nice and useful algorithm for converting a q-series into 
an infinite product. Any given  q-series may be written formally as an infinite product



> > 

(2)(2)

> > 

> > 

> > 

(1)(1)

Here we assume the     are integers. By taking the logarithmic derivative of both sides we can obtain
 the recurrence

Letting   a =1  we obtain the well-known special case

We can also easily construct a recurrence for the  a   from the recurrence above.

The function   prodmake   is an implementation of Andrews' algorithm.  Other related functions are
 etamake   and   jacprodmake.

3.1 prodmake
prodmake(f,q,T)   converts the q-series f into an infinite product that agrees with f to 

.   Let's take a look at the left side of the Rogers-Ramanujan identity.

with(qseries): 
x:=add(q^(n^2)/aqprod(q,q,n),n=0..8):
series(x,q,50);

prodmake(x,q,40);

1

We have rediscovered the right side of the Rogers-Ramanujan identity!
___________________________________________________________________________________
_____
Exercise 1.   Find (and prove) a product form for the q-series



> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 
> > 

> > 

> > 
> > 

> > 

The identity you find is originally due to Rogers [34, p.330].  See also Andrews [2, pp.38--39] for a list 
of
some related papers.
___________________________________________________________________________________
_____

3.2 qfactor
The function  qfactor  is a version of  prodmake. 
qfactor(f,T)attempts to write a rational function f in q as a q-product, ,ie., as a product of terms of 
the 
form .  The second argument T is optional. It specifies an an upper bound for the exponents of 
q   that 
can occur in the product.  If T is not specified it is given  a default value of 4d+3 where d is the 
maximum of the degree in q of the numerator and denominator.   The algorithm is quite simple. First 
the function is factored as usual,
and then it uses  prodmake to do further factorisation into q-products. Thus even if only part of the 
function can be written as a q-product  qfactor  is able to find it.

As an example we consider some rational functions    introduced by Andrews  [4, p.14]  to 
explain
Rogers's  [34] first proof of the Rogers-Ramanujan identities. The   are defined recursively as 
follows:
(3.3)      
(3.4)      , 

(3.5)      

with(qseries):
 T:=proc(r,j)
    option remember; 
    local x,k; 
    x:=0; 
    if j=0 or j=1 then
      RETURN((j-1)^2): 
    else 
       for k from 1 to floor(j/2) do 
           x:=x-qbin(q,k,r+2*k)*T(r+2*k,j-2*k); 
        od: 
        RETURN(expand(x)); 
    fi: 
 end:
   t8:=T(8,8);



> > 

> > 

> > 

(3)(3)

> > 

> > 

(6)(6)

> > 

> > 

> > 

> > 

> > 

> > 
> > 

> > 

(5)(5)

(4)(4)
   factor(t8);

   qfactor(t8,20);

Observe how we used factor to factor  t8  into cyclotomic polynomials. However, qfactor was
able to factor  t8 as a q-product.
We see that

_________________________________________________________________________________
EXERCISE 2.   Use  qfactor  to factorize T(r,n) for different values of r  and n. Then write 
T(r,n) (defined above) as a q-product for general r and n.
_________________________________________________________________________________

For our next example we examine the sum 

 dixson:=proc(a,b,c,q) 
    local x,k,y; 
    x:=0:  y:=min(a,b,c): 
    for k from -y to y do 
      x:=x+(-1)^(k)*q^(k*(3*k+1)/2)*      
      qbin(q,c+k,b+c)*qbin(q,a+k,c+a)*qbin(q,b+k,a+b);   
    od: 
    RETURN(x): 
 end: 
   dx := expand(dixson(5,5,5,q)): 
   qfactor(dx,20);

We find that



(7)(7)
> > 

(3)(3)

(11)(11)

(9)(9)

> > 

> > 

> > 

> > 

(10)(10)

(12)(12)

(8)(8)

> > 

_________________________________________________________________________________
EXERCISE 3.   Write the sum  

as a q-product for general integral a. The identity you obtain is a special case of [4, Eq.(4.24), p.38].
_________________________________________________________________________________

3.3  etamake
Recall from  (2.2.1) that  etaq  is the function to use for computing q-expansions of eta products. 
If one wants to apply the theory of modular forms to q-series it is quite useful to determine whether
a given q-series is a product of eta functions. The function in the package for doing this conversion
is  etamake.
etamake(f,q,T) will write the given q-series f as a product of eta functions which agrees with 
f  up to  .   As an example, let's see how we can write the theta functions
as eta products.
t2:=theta2(q,100)/q^(1/4);

etamake(t2,q,100);

t3:=theta3(q,100);

etamake(t3,q,100);
5

t4:=theta4(q,100);

etamake(t4,q,100);
2

We are led to the well-known identities:



(3)(3)

> > 

,

The idea of the algorithm is quite simple. Given a q-series f  (say with leading coefficient 1) one just 
keeps recursively
multiplying by powers of the right eta function until  the desired   terms agree. For example, suppose 
we are given a
 q-series

Then the next step is to multiply by   etaq(q,k,T)^(-c).
_________________________________________________________________________________
EXERCISE 4.
Define the q-series

where   . Two of the three functions above can be written as eta products.

Can you find them? 
Hint: It would be wise to define
omega:=RootOf(z^2+z+1=0);

See  [12] for the answer and much more.
_________________________________________________________________________________

3.4  jacprodmake
In  (2.2.2)  we observed that the right side of the Rogers-Ramanujan identity could be written in
 terms of a Jacobi product. The function  jacprodmake converts a q-series into a Jacobi-type 
product if one exists.  Given a q-series f,  jacprodmake(f,q,T) attempts to convert  f into a 
product of  theta functions that agrees with f to order   .   Each theta-function has the form
JAC(a,b,infinity), where  a, b are integers and  .   If  , then JAC(a,b,
infinity) 
corresponds to the  theta-product



> > 

> > 

> > 

> > 

(3)(3)

> > 

(14)(14)

> > 

> > 

> > 

> > 

(13)(13)

> > 

> > 

We call this a theta product because it is .
The   jacprodmake   function is really a variant of  prodmake.  It involves using 
prodmake  to compute the sequence of exponents and then searching for periodicity.

   If   , then JAC(0,b,infinity) corresponds to the  eta-product

We note that this product can also be thought of as a theta-product
since can be written

Let's re-examine the Rogers-Ramanujan identity.
   with(qseries): 
   x:=1: 
   for n from 1 to 8 do 
      x:=x+q^(n*n)/aqprod(q,q,n): 
   od: 
   x:=series(x,q,50): 
   y:=jacprodmake(x,q,40);

   z:=jac2prod(y);

Note that we were able to observe that the left side of the Rogers-Ramanujan identity (at least up 
through  ) can be written as a quotient of theta functions. We used the function  jac2prod, to 
simplify the result and get it into a more recognizable form. The function   jac2prod(jacexpr)
converts a product of theta functions into q-product form; ie., as a product of  functions of the form

.
Here  jacexpr  is a product (or quotient) of terms  JAC(i,j,infinity), where i, j are integers
and  . 

A related function is   jac2series. This converts a Jacobi-type product into a form better for 
computing its q-series.  It simply replaces each Jacobi-type product with its corresponding 
theta-series.
 with(qseries):
 x:=0:
 for n from 0 to 10 do 



> > 

> > 

(3)(3)

> > 

(15)(15)

(16)(16)

> > 
> > 

   x := x + q^(n*(n+1)/2)*aqprod(-q,q,n)/aqprod(q,q,2*n+1):
 od: 
 x:=series(x,q,50):
 jp:=jacprodmake(x,q,50);

 jac2series(jp,500);
13 2

It seems that the q-series

can be written as Jacobi-type product. Assuming that this is the case we used jac2series to write
 this q-series in terms of theta-series at least up to .  This should provide an efficient method
for computing the q-series expansion and also for computing the function at particular values of q.

_________________________________________________________________________________
EXERCISE 5.   Use  jacprodmake  and  jac2series  to compute the q-series expansion of

up to   , assuming it is Jacobi-type product.   Can you identify the infinite product? 
This function occurs in Slater's list  [36, Eq.(46), p.156].



> > 

> > 

> > 

> > 

(3)(3)

(18)(18)

(17)(17)

_________________________________________________________________________________

4. The Search for Relations

The functions for finding relations between q-series are
findhom,  findhomcombo, findnonhom,  findnonhomcombo, and findpoly.

4.1 findhom
If the q-series one is concerned with are modular forms of a particular weight, then theoretically these 
functions will satisfy homogeneous polynomial relations. See [18, p. 263], for more details and 
examples.
The function findhom(L,q,n,topshift)returns a set of potential homogeneous relations of 
order n among the q-series in the list L.  The value of  topshift  is usually taken to be zero. 
However if it appears that spurious relations are being generated then a higher value of  topshift
 should be taken.
The idea is to convert this into a linear algebra problem.  This program generates a list of monomials of

degree n of the functions in the given list of q-series L.   The q-expansion (up to a certain point) of each
 monomial is found and converted into a row vector of a matrix.   The set of relations is then found by 
computing the kernel of the transpose of this matrix.   As an example, we now consider  relations 
between the theta functions  ,  ,  ,  and  .
with(qseries):
findhom([theta3(q,100),theta4(q,100),theta3(q^2,100),theta4(q^2,
100)],q,1,0);

findhom([theta3(q,100),theta4(q,100),theta3(q^2,100), theta4(q^2,
100)],q,2,0);

From the session above we see that there is no linear relation between the functions  ,  ,  

,  and  However, it appears that there are two quadratic relations:

and

This is Gauss' parametrization of the arithmetic-geometric mean iteration. See  [13, Ch 2] for details.

_________________________________________________________________________________
EXERCISE 6.
Define  as in Exercise 2.
Find homogeneous relations between the functions   ,  .



> > 

(3)(3)

In particular, try to get    and    in terms of   
See [12] for more details.  These results lead to a cubic analog of the AGM due to Jon and Peter 
Borwein 
[10], [11].
_________________________________________________________________________________

4.2 findhomcombo
The function findhomcombo is a variant of findhom.
Suppose f is a q-series and L is a list of q-series.
findhomcombo(f,L,q,n,topshift,etaoption)
tries to express f as a homogeneous polynomial in the members of L.
If  etaoption=yes then each monomial in the  combination is converted into an eta-product using
etamake.

We illustrate this function with certain Eisenstein series.
For p an odd prime define 

(the Legendre symbol).

Suppose k is an  integer, ,  and  (mod 2).

Define the Eisenstein series

Then     is a modular form of weight k

the congruence subgroup . See [28], [20] for more details. The classical result is the following 
identity found by Ramanujan  [32, Eq. (1.52), p. 354]:

Kolberg [28]  has found many relations between such Eisenstein series and certain eta products.
The eta function   is a modular form of weight  [27, p.121]. Hence the modular forms

are modular forms of weight . In fact, it can be shown that they are modular forms 

on   with character  .  We might therefore expect that   U  can be written

as a homogeneous cubic polynomial in B  and .   We write a short maple program to compute the 
Eisenstein  series .



> > 

> > 

(19)(19)

> > 

> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

   with(numtheory): 
   UE:=proc(q,k,p,trunk) 
      local x,m,n: 
      x:=0: 
      for m from 1 to trunk do 
          for n from 1 to trunk/m do  
          x:=x + legendre(m,p)*n^(k-1)*q^(m*n):  
          od: 
      od:  
   end: 

The function UE(q,k,p,trunk)returns the q-expansion of  up through .

We note that legendre(m,p)returns the Legendre symbol  .

We are now ready to study .
   with(qseries): 
   f := UE(q,6,5,50): 
   B1 := etaq(q,1,50)^5/etaq(q,5,50): 
   B2 := q*etaq(q,5,50)^5/etaq(q,1,50): 
   findhomcombo(f,[B1,B2],q,3,0,yes);

It would appear that                                      

The proof is a straightforward exercise using the theory of modular forms.

_________________________________________________________________________________
EXERCISE 7.
Define the following eta products:

What is the weight of these modular forms? 
Write  U in terms of  
The identity that you should find was originally due to Ramanujan.
Also see Fine [15, p. 159] and [19, Eq. (5.4)].
If you are ambitious find  U  in terms of  
_________________________________________________________________________________

4.3 findnonhom
In section 4.1 we introduced the function findhom to find homogeneous relations between q-series.
The nonhomogeneous analog is findnonhom.
The syntax of  findnonhom is the same as  findhom.



> > 

> > 

> > 

(3)(3)

(23)(23)

(20)(20)

> > 

> > 

(21)(21)

> > 

> > 

> > 

(22)(22)

> > 

Typically (but not necessarily)  findhom is used to find relations between modular forms of a certain 
weight. To find relations between modular functions we would use  findnonhom.
We consider an example involving theta functions.
with(qseries): 
F := q -> theta3(q,500)/theta3(q^5,100): 
U := 2*q*theta(q^10,q^25,5)/theta3(q^25,20);

EQNS := findnonhom([F(q),F(q^5),U],q,3,20);

ANS:=EQNS[1];

CHECK := subs({X[1]=F(q),X[2]=F(q^5),X[3]=U},ANS): 
series(CHECK,q,500);

We define

and

We note that  and  are modular functions since they are ratios of theta series.
From the session above we see that it appears that 

Observe how we were able to  verify  this equation to high order.
When findnonhom returns a set of relations the variable X has been declared  global. 
This is so we can manipulate the relations. It this way we were able to assign ANS
to the relation found and then use subs and series
to check it to order .

4.4 findnonhomcombo
The syntax of findnonhomcombo is the same as findhomcombo.
We consider an example involving eta functions.  First we define 



> > 

> > 

> > 

(3)(3)

> > 
> > 

> > 

(24)(24)

(25)(25)

> > 

and

Using the theory of modular functions it can be shown that one must be able to write  in terms of 
and powers of .  We now use  findnonhomcombo to get  in terms of and 
with(qseries):
xi:=series(q^2*etaq(q,49,100)/etaq(q,1,100),q,101):
T:=series(q*(etaq(q,7,100)/etaq(q,1,100))^4,q,101):
findnonhomcombo(T^2,[T,xi],q,[1,7],0,no);

collect(%[1],[X[1]]);

Then it seems that

This is the modular equation used by Watson [41] to prove Ramanujan's partition congruences for
powers of 7.  Also see [5] and [26], and see [16] for an elementary treatment.

___________________________________________________________________________________
_____
EXERCISE 8.
Define

and

Use findnonhomcombo to express T as a polynomial in   of degree 5. The modular equation you 
find was used by Watson to prove Ramanujan's partition congruences for powers of 5. See [23] for an 
elementary treatment.
___________________________________________________________________________________
_____
EXERCISE 9.
Define  and as in  Exercise 2.
Define 



> > 

> > 

> > 

> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

and the classical Eisenstein series (usually called ; see  [35, p. 93])

Use  findnonhomcombo to express N(q) in terms of a(q) and x(q).
 HINT:  N(q) is a modular form of weight 6 and a(q) and c(q) are modular forms of weight 1. 
See  [8]  for this result and many others.
___________________________________________________________________________________
_____

4.5 findpoly
The function findpoly is used to find a polynomial relation between two given q-series with degrees 
specified.
findpoly(x,y,q,deg1,deg2,check)
 returns a possible polynomial in  X, Y (with corresponding degrees deg1, deg2) which is satisfied by 
the q-series x and y.
If check is assigned then the relation is checked to .
We illustrate this function with an example involving theta functions and the function  and  
encountered in Exercises 2  and 7. It can be shown that

See [12] for details. This equation provides a better way of computing the q-series expansion of  
than the definition.   In  Exercise 2 you would have found that

See [12] for a proof.   Define 

and

We use  findpoly to find a polynomial relation between x and y.
with(qseries):
x1 := radsimp(theta2(q,100)^2/theta2(q^3,40)^2): 
x2 := theta3(q,100)^2/theta3(q^3,40)^2: 
x := x1+x2: 
c := q*etaq(q,3,100)^9/etaq(q,1,100)^3: 
a := radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2
(q^3,40)):
c := 3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100): 
y := radsimp(c^3/a^3): 



> > 

> > 

(3)(3)

> > 

(26)(26)

P1:=findpoly(x,y,q,3,1,60);
`WARNING: X,Y are global.`

The polynomial is

It seems that x and y satisfy the equation

Therefore it would seem that 

See [8, pp. 4237-4240]  for more details.
___________________________________________________________________________________
_____
EXERCISE 10.   Define 

Use polyfind to find    as a rational function in m.

The answer is Eq.(12.8) in [8].
___________________________________________________________________________________
_____

5. Sifting coefficients
Suppose we are given a q-series 

Occasionally it will turn out the generating function

will have a very nice form. A famous example for  is due to Ramanujan:



> > 

(28)(28)

> > 

> > 

(3)(3)

> > 
> > 

(27)(27)

> > 

(26)(26)

> > 

See [1, Cor. 10.6].  In fact, G.H. Hardy and Major MacMahon [31, p. xxxv] both agreed that this is 
Ramanujan's most beautiful identity.
Suppose s is the q-series

then   sift(s,q,n,k,T) returns the q-series

We illustrate this function with another example from the theory of partitions. Let  denote the 
number of partitions of  into distinct parts. Then it is well known that

We now examine the generating function of  in MAPLE.
with(qseries):
PD:=series(etaq(q,2,200)/etaq(q,1,200),q,200): 
PD1:=sift(PD,q,5,1,199);

etamake(PD1,q,38);

So it would seem that

This result was found originally by Rodseth  [33].



> > 

> > 

> > 

(3)(3)

(30)(30)

> > 

(29)(29)

> > 

(26)(26)

___________________________________________________________________________________
_____
EXERCISE 11.   Rodseth also found the generating functions for  for  and 

 For 
each r use  sift and  jacprodmake to identify these generating functions as infinite products.
___________________________________________________________________________________
_____

6.  Product Identities

At present, the package contains the Triple Product identity, the Quintuple Product identity and 
Winquist's identity.  These are the most commonly used of the Macdonald identities
[30], [37],  [38].  The Macdonald identities  are the analogs of the Weyl denominator for affine 
roots systems.  Hopefully, a later version of this package will include these more general identities.

6.1  The Triple Product Identity
The triple product identity is

      (6.1)

where      and |q|<1.  The Triple Product Identity is originally due to  Jacobi  
[24,Vol I].  The first combinatorial proof of the triple product identity is due to Sylvester 
[39].   Recently, Andrews  [3] and Lewis [29]  have found nice combinatorial proofs. 
The triple product occurs frequently in the theory of partitions.  For instance, most proofs of 
the Rogers-Ramanujan identity crucially depend on the triple product identity. 

tripleprod(z,q,T)   returns the q-series expansion to order     of 
Jacobi's triple product  (6.1).  This expansion is found by simply truncating the right side of
(6.1).

tripleprod(z,q,10);

tripleprod(q,q^3,10);   

The last calculation is an illustration of Euler's Pentagonal Number Theorem 
[1, Cor. 1.7 p.11]:

    (6.2)

6.2  The Quintuple Product Identity
The following identity is the Quintuple Product Identity:



> > 

> > 

> > 

(31)(31)

> > 

(3)(3)

(33)(33)

> > 

> > 

> > 

(32)(32)

(26)(26)

> > 

> > 

    (6.3)

Here |q|<1 and   . This identity is the   case of the Macdonald identities [30].   
The quintuple product identity is usually attributed to Watson [40].   However it can
be found in Ramanujan's lost notebook [32, p. 207].   Also see  [7] for more history
and some proofs.
The function  quinprod(z,q,T) returns the quintuple product identity in different forms:

   (i)   If T is a positive integer it returns the q-expansion of the right side of (6.3)  to order 

  (ii)   If T=  prodid  then  quinprod(z,q,prodid) returns the quintuple product identity in 
product form.

 (iii)   If T =   seriesid  then  quinprod(z,q,seriesid)  returns the quintuple product identity 
in series form.
with(qseries):
quinprod(z,q,prodid);

quinprod(z,q,seriesid);

quinprod(z,q,3);

Let's examine a more interesting application.  Euler's infinite product may be dissected according to the
 residue of the exponent of q mod 5:

By (6.2) we see that    = = 0  since    1 or 2 mod 5. Let's see if we can identify 

with(qseries): 
EULER:=etaq(q,1,500): 



> > 

(35)(35)

(34)(34)

> > 

(3)(3)

> > 

> > 

> > 

(37)(37)

> > 

(26)(26)

(36)(36)

> > 

> > 

E0:=sift(EULER,q,5,0,499);

jp:=jacprodmake(E0,q,50);

jac2prod(jp);

qp:=quinprod(q,q^5,20):
series(qp,q,100);

From our maple session it appears that

  =                        (6.4)

and that this product can be gotten by replacing q by    and z by q in the product side of the quintuple 
product identity  (6.3).

___________________________________________________________________________________
_____
EXERCISE 12.   (i)   Use the quintuple product identity  (6.3) and Euler's pentagonal number theorem

to prove (6.4).
(ii)   Use MAPLE to identify and prove product expressions for    and  .
(iii)   This time see if you can repeat (i), (ii) but split the exponent mod 7.
(iv)   Can you generalize these results to arbitrary modulus?  Atkin and Swinnerton-Dyer found a 
generalization. See Lemma 6 in [6].
___________________________________________________________________________________
_____

6.3  Winquist's Identity
Back in 1969, Lasse Winquist [43] discovered a remarkable identity

(6.5)
By dividing both sides by    and letting    he was able to express the product



> > 

(3)(3)

(26)(26)

(39)(39)

> > 

(40)(40)

> > 

(34)(34)

> > 

> > 

> > 

> > 

(38)(38)
> > 

> > 
> > 

> > 

> > 
> > 

as a double series and prove Ramanujan's partition congruence
      (mod 11).

This was probably the first truly elementary proof of Ramanujan's congruence modulo 11. The 
interested 
reader should see Dyson's article [14] for some fascinating history on identities for powers of the 
Dedekind
eta function and how  they led to the Macdonald identities. A new proof of Winquist's identity has been

found recently by S.-Y. Kang [25].  Mike Hirschhorn [22] has found a four-parameter generalization of

Winquist's identity.

The function  winquist(a,b,q,T) returns the  q-expansion of the right side of (6.5)
to order .

We close with an example.  For    define

Now define the following functions:

These functions occur in Theorem 6.7 of [17] as well as the function A B .
with(qseries):
Q:=n->tripleprod(q^n,q^33,10):
A0:=Q(15):     A3:=Q(12):    A7:=Q(6):
A8:=Q(3):    A9:=Q(9): 
B2:=Q(13)-q^3*Q(2):   B4:=Q(7)+q*Q(4): 
IDG:=series( ( A0*B2-q^2*A9*B4),q,200): 
series(IDG,q,10);

jp:=jacprodmake(IDG,q,50);

jac2prod(jp);



> > 

(3)(3)

> > 

(26)(26)

(34)(34)

> > 

> > 

(42)(42)

> > 

(41)(41)
> > 

series(winquist(q^5,q^3,q^11,20),q,20);

series(IDG-winquist(q^5,q^3,q^11,20),q,60);

From our maple session it seems that
A B

(6.6)
and that this product appears in Winquist's identity on replacing

 by  and letting   and 
___________________________________________________________________________________
_____
EXERCISE 13.   
(i)  Prove (6.6) by using the triple product identity (6.1) to write the right side of Winquist's 
identity (6.5) as a sum of two products.
(ii)   In a similar manner find and prove a product form for

A
___________________________________________________________________________________
_____
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