Congruences for weight $3 / 2$ eta-quotients and their connection with mod 4 conjectures for the spt function and unimodal sequences

Frank Garvan
url: qseries.org/fgarvan
University of Florida

Southern Georgia Mathematics Conference Symbolic Computations Conference

Saturday, April 3, 2021

ABSTRACT

THE PARTITION FUNCTION

SPT function
SPT mod 2 and 4
STRONG UNIMODAL SEQUENCES

WEIGHT 3/2 ETA-PRODUCTS
THE SEARCH
REFERENCES

ABSTRACT - JOINT WORK WITH RONG CHEN

- Recently the speaker and Rong Chen (Shanghai) proved Bryson, Ono, Pitman and Rhoades's mod 4 conjectures for strongly unimodal sequences and Lim, Kim and Lovejoy's mod 4 conjectures for odd-balanced unimodal sequences as well as some mod 4 conjectures for the Andrews spt function.
- In this talk we show how we found a similar mod 4 behaviour for certain weight $3 / 2$ eta-quotients. This led to a connection with the Hurwitz class number and eventually gave us the clue for solving the mod 4 unimodal sequence conjectures.
- This is joint work with Rong Chen (Shanghai).

THE PARTITION FUNCTION

Let $p(n)$ denote the number of partitions of n.
Example The partitions of 4 are

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1,
$$

so that $p(4)=5$.
> with(qseries);
[J2jaclist, Jetamake, Jterm2JACPROD, aqprod, briefqshelp, . . .
tripleprod, winquist, zqfactor]
$>\operatorname{etaq}(q, 1,1000)$;

$$
\begin{aligned}
& 1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26} \\
& +\cdots+q^{852}+q^{876}-q^{925}-q^{950}
\end{aligned}
$$

> P:=series(1/etaq(q,1,1000), q, 1001);
$1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+11 q^{6}+15 q^{7}+22 q^{8}+\cdots$
$+\cdots+24061467864032622473692149727991 q^{1000}$
> findcong(P,1000);

$$
\begin{gathered}
{[4,5,5]} \\
{[5,7,7]} \\
{[6,11,11]} \\
{[24,25,25]}
\end{gathered}
$$

RAMANUJAN

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5), \\
p(7 n+5) & \equiv 0 \quad(\bmod 7), \\
p(11 n+6) & \equiv 0 \quad(\bmod 11) \\
p(25 n+24) & \equiv 0 \quad(\bmod 25)
\end{aligned}
$$

SPT function

- Andrews (2008) defined the function $\operatorname{spt}(n)$ as the total number of appearances of the smallest parts in the partitions of n. For example,

$$
\dot{4}, \quad 3+\dot{1}, \quad \dot{2}+\dot{2}, \quad 2+\dot{1}+\dot{1}, \quad \dot{1}+\dot{1}+\dot{1}+\dot{1} .
$$

Hence, $\operatorname{spt}(4)=10$.

$$
\sum_{n=1}^{\infty} \operatorname{spt}(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{n}}{\left(1-q^{n}\right)^{2}\left(1-q^{n+1}\right)\left(1-q^{n+2}\right) \cdots}
$$

$$
\sum_{n=1}^{\infty} \operatorname{spt}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} q^{n(n+1) / 2}\left(1+q^{n}\right)\left(1-q^{n^{2}}\right)}{\left(1-q^{n}\right)^{2}}
$$

> with(qseries):
> SPTG:=series(1/etaq(q,1,1001)* $\operatorname{add}\left((-1)^{\wedge}(n-1) * q^{\wedge}(n *(n+1) / 2) *\left(1-q^{\wedge}\left(n^{\wedge} 2\right)\right) *\left(1+q^{\wedge} n\right)\right.$ $\left.\left./\left(1-q^{\wedge} n\right)^{\wedge} 2, n=1 . .46\right), q, 1001\right)$;
$q+3 q^{2}+5 q^{3}+10 q^{4}+14 q^{5}+26 q^{6}+35 q^{7}+57 q^{8}+80 q^{9}+$
$+\cdots+600656570957882248155746472836274 q^{1000}+O\left(q^{1001}\right)$
> with (qsOEIS) ;
[getOEISseq, grabOEIS, matchOEIS, qs2L, qsOEISchanges, qsOEISpversion, seqlist2string]
> L:=qs2L(SPTG,1,19);
$\mathrm{L}:=[1,3,5,10,14,26,35,57,80,119,161,238$, $315,440,589,801,1048,1407,1820]$
> matchOEIS(L);
There were 1 matches (returning the first 1)
92269, "Spt function: total number of smallest parts (counted with multiplicity) in all partitions of n."
> findcong(SPTG,1000);

$$
\begin{gathered}
{[4,5,5]} \\
{[5,7,7]} \\
{[6,13,13]} \\
{[4,25,2]} \\
{[9,25,4]} \\
{[14,25,4]} \\
{[19,25,2]}
\end{gathered}
$$

ANDREWS (2008) proved that

$$
\begin{aligned}
\operatorname{spt}(5 n+4) & \equiv 0 \quad(\bmod 5) \\
\operatorname{spt}(7 n+5) & \equiv 0 \quad(\bmod 7) \\
\operatorname{spt}(13 n+6) & \equiv 0 \quad(\bmod 13)
\end{aligned}
$$

ALSO

$$
\begin{aligned}
\operatorname{spt}(25 n+4) & \equiv 0 \quad(\bmod 2), \\
\operatorname{spt}(25 n+9) & \equiv 0 \quad(\bmod 4), \\
\operatorname{spt}(25 n+14) & \equiv 0 \quad(\bmod 4), \\
\operatorname{spt}(25 n+19) & \equiv 0 \quad(\bmod 2),
\end{aligned}
$$

SPT mod 2 and 4

PARITY OF SPT
 [FOLSOM and ONO (2008)] [ANDREWS, G. and LIANG (2011-2013)]

$\operatorname{spt}(n)$ is odd and if and only if $24 n-1=p^{4 a+1} m^{2}$ for some prime $p \equiv 23(\bmod 24)$ and some integers a, m, where $(p, m)=1$.

SPT MOD 4 [RONG CHEN and G. (2021)]

For $n>0$ be an integer, $\operatorname{spt}(n) \equiv 2(\bmod 4)$ if and only if $24 n-1$ has the form

$$
24 n-1=p_{1}^{4 a+1} p_{2}^{4 b+1} m^{2},
$$

where p_{1} and p_{2} are primes such that $\left(\frac{p_{1}}{p_{2}}\right)=-\varepsilon\left(p_{2}\right)$ for $\varepsilon(p)=-1$ if $p \equiv \pm 5(\bmod 24)$ and $\varepsilon(p)=1$ otherwise, $\left(m, p_{1} p_{2}\right)=1$ and $a, b \geq 0$ are integers.

COROLLARY

Let $p>3$ be a prime where $p \not \equiv 23(\bmod 24)$. Suppose $24 \delta_{p} \equiv 1$ $\left(\bmod p^{2}\right), k, n \in \mathbb{Z}$ and $\left(\frac{k}{p}\right)=\varepsilon(p)$ where $\varepsilon(p)=-1$ if $p \equiv \pm 5$ $(\bmod 24)$ and $\varepsilon(p)=1$ otherwise. Then

$$
\operatorname{spt}\left(p^{2} n+(p k+1) \delta_{p}\right) \equiv 0 \quad(\bmod 4)
$$

A sequence of integers $\left\{a_{j}\right\}_{j=1}^{s}$ is a strongly unimodal sequence of size n if it satisfies

$$
0<a_{1}<a_{2}<\cdots<a_{k}>a_{k+1}>\cdots>a_{s}>0 \quad \text { and } \quad a_{1}+a_{2}+\cdots+a_{s}=n,
$$

for some k. Let $u(n)$ be the number of such sequences.
EXAMPLE: $n=5$:

$$
\begin{aligned}
& 0<1<4>0 \\
& 0<1<3>1>0 \\
& 0<2<3>0 \\
& 0<3>2>0 \\
& 0<4>1>0 \\
& 0<5>0
\end{aligned}
$$

$u(5)=6$

GENERATING FUNCTION:

$$
\begin{aligned}
& \mathcal{U}(q):=\sum_{n} u(n) q^{n} \\
& =\sum_{n=0}^{\infty}(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right) q^{n+1}\left(1+q^{n}\right) \cdots\left(1+q^{2}\right)(1+q) \\
& =q+q^{2}+3 q^{3}+4 q^{4}+6 q^{5}+10 q^{6}+15 q^{7}+21 q^{8} \\
& +30 q^{9}+43 q^{10}+59 q^{11}+82 q^{12}+111 q^{13}+148 q^{14}+\cdots
\end{aligned}
$$

BRYSON, ONO, PITMAN, RHOADES CONJ.(2012) CHEN and G. (2021)

Suppose $\ell \equiv 7,11,13,17(\bmod 24)$ is prime and $\left(\frac{k}{\ell}\right)=-1$. Then for all n we have

$$
u\left(\ell^{2} n+k l-s(\ell)\right) \equiv 0 \quad(\bmod 4)
$$

where $s(\ell)=\frac{1}{24}\left(\ell^{2}-1\right)$.

A sequence is called odd-balanced if the peak is even, even parts to the left and right of the peak are distinct and the odd parts to the left of the peak are identical with those to the right. We let $v(n)$ be the number of odd-balanced unimodal sequences of size $2 n+2$.

THE GENERATING FUNCTION

$$
\begin{aligned}
& \mathcal{V}(q):=\mathcal{V}(1 ; q)=\sum_{n} v(n) q^{n}=\sum_{n=0}^{\infty} \frac{(-q ; q)_{n}(-q ; q)_{n} q^{n}}{\left(q ; q^{2}\right)_{n+1}} \\
& =1+2 q+5 q^{2}+9 q^{3}+16 q^{4}+29 q^{5}+48 q^{6}+77 q^{7}+123 q^{8} \\
& +191 q^{9}+290 q^{10}+436 q^{11}+643 q^{12}+936 q^{13}+1352 q^{14}+\cdots
\end{aligned}
$$

where $(a)_{\infty}=(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)$.

KIM, LIM, LOVEJOY CONJ.(2016)

 CHEN and G. (2021)Let $p \not \equiv \pm 1(\bmod 8)$ be an odd prime, suppose $8 \delta_{p} \equiv 1\left(\bmod p^{2}\right)$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right)=1$. Then

$$
v\left(p^{2} n+(p k-7) \delta_{p}\right) \equiv 0 \quad(\bmod 4)
$$

WEIGHT 3/2 ETA-PRODUCTS

The SEARCH for similar congruences in the theory of modular forms.
We define
$a(n)=$ the number of representations of n as a sum of two pentagonal and three times a triangular number,
$b(n)=$ the number of representations of n as a sum of a pentagonal and three times the sum of two triangular numbers,
$c(n)=$ the number of representations of n as a sum of a pentagonal andtwo triangular numbers,
so that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a(n) q^{n}=\left(\sum_{k=-\infty}^{\infty} q^{k(3 k+1) / 2}\right)^{2} \sum_{m=0}^{\infty} q^{3 m(m+1) / 2}=\frac{J_{3}^{3} J_{2}^{2}}{J_{1}^{2}}=q^{-11 / 24} \frac{\eta(3 \tau)^{3} \eta(2 \tau)^{2}}{\eta(\tau)^{2}} \\
& \sum_{n=0}^{\infty} b(n) q^{n}=\sum_{k=-\infty}^{\infty} q^{k(3 k+1) / 2}\left(\sum_{m=0}^{\infty} q^{3 m(m+1) / 2}\right)^{2}=\frac{J_{6}^{3} J_{2}}{J_{1}}=q^{-19 / 24} \frac{\eta(6 \tau)^{3} \eta(2 \tau)}{\eta(\tau)} \\
& \sum_{n=0}^{\infty} c(n) q^{n}=\sum_{k=-\infty}^{\infty} q^{k(3 k+1) / 2}\left(\sum_{m=0}^{\infty} q^{m(m+1) / 2}\right)^{2}=\frac{J_{3}^{2} J_{2}^{5}}{J_{6}^{3} J_{1}^{3}}=q^{-7 / 24} \frac{\eta(3 \tau)^{2} \eta(2 \tau)^{5}}{\eta(6 \tau) \eta(\tau)^{3}}
\end{aligned}
$$

Here we have used the usual notation for infinite products and the Dedekind eta-function

$$
J_{k}=\prod_{n=1}^{\infty}\left(1-q^{k n}\right), \quad \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

where $q=\exp (2 \pi i \tau)$ and $\Im(\tau)>0$.

$$
\sum_{k=-\infty}^{\infty} q^{k(3 k+1) / 2}=\frac{J_{3}^{2} J_{2}}{J_{6} J_{1}}, \quad \sum_{k=0}^{\infty} q^{k(k+1) / 2}=\frac{J_{2}^{2}}{J_{1}}
$$

ETA HAS WEIGHT $1 / 2$

$$
\eta(\tau+1)=\exp (2 \pi i / 12) \eta(\tau), \quad \eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau)
$$

[RONG CHEN and G. (2021)]

Let $p>3$ be prime, suppose $24 \delta_{p} \equiv 1\left(\bmod p^{2}\right)$, and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right)=1$. Then

$$
\begin{aligned}
a\left(p^{2} n+(p k-11) \delta_{p}\right) \equiv 0 & (\bmod 4), & & \text { if } p \not \equiv 11 \quad(\bmod 24), \\
b\left(p^{2} n+(p k-19) \delta_{p}\right) \equiv 0 & (\bmod 4), & & \text { if } p \not \equiv 19 \quad(\bmod 24), \\
c\left(p^{2} n+(p k-7) \delta_{p}\right) \equiv 0 & (\bmod 4), & & \text { if } p \not \equiv 7 \quad(\bmod 24) .
\end{aligned}
$$

THE SEARCH for weight $3 / 2$ eta-quotients with ...

Suppose $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}$ and

$$
1+\sum_{n=1}^{\infty} a_{n} q^{n}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{b_{n}}
$$

holds formally. Then

$$
\begin{align*}
n a_{n} & =-\sum_{j=1}^{n} D_{j} a_{n-j}, \quad \text { where } D_{j}=\sum_{d \mid j} d b_{d} \tag{i}\\
b_{n} & =a_{n}-\frac{1}{n}\left(\sum_{\substack{d \mid j \\
d<n}} d b_{d}+\sum_{j=1}^{n-1} D_{j} a_{n-j}\right) \tag{ii}
\end{align*}
$$

prodmake

> with(qseries):
> A:=series($\exp (q), q, 20)$;
$1+q+\frac{1}{2} q^{2}+\frac{1}{6} q^{3}+\frac{1}{24} q^{4}+\frac{1}{120} q^{5}+\cdots+\frac{1}{121645100408832000} q^{19}+O\left(q^{20}\right)$
> prodmake(A,q,20,list);
$\left[-1, \frac{1}{2}, \frac{1}{3}, 0, \frac{1}{5},-\frac{1}{6}, \frac{1}{7}, 0,0,-\frac{1}{10}, \frac{1}{11}, 0, \frac{1}{13},-\frac{1}{14},-\frac{1}{15}, 0, \frac{1}{17}, 0, \frac{1}{19}\right]$

$$
\exp (q)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-\mu(n) / n}
$$

eta-quotients and etamake

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

where $q=\exp (2 \pi i \tau)$ and $\Im(\tau)>0$.

$$
f(\tau)=\prod_{d \mid N} \eta(d \tau)^{m_{d}}
$$

where N is a positive integer and each $d>0$ and $m_{d} \in \mathbb{Z}$.
etamake(f,q, $\mathbf{T})$ - attempts to convert f to an eta-quotient up to q^{T}
> with(qseries):
$>\mathrm{T} 3:=\operatorname{add}\left(\mathrm{q}^{\wedge}\left(\mathrm{n}^{\wedge} 2\right), \mathrm{n}=-10 . .10\right)$;
$2 q^{100}+2 q^{81}+2 q^{64}+2 q^{49}+2 q^{36}+2 q^{25}+2 q^{16}+2 q^{9}+2 q^{4}+2 q+1$
> etamake(T3,q,100);

$$
\frac{\eta(2 \tau)^{5}}{\eta(4 \tau)^{2} \eta(\tau)^{2}}
$$

Searching for weight $3 / 2$ eta-quotients with ... Let
$1 \leq \ell<24$ where $(\ell, 24)=1$ and

$$
F=\sum_{n=0}^{\infty} f(n) q^{n+\ell / 24}=\prod_{d \mid 12} \eta(d \tau)^{m_{d}}
$$

We define a function $\operatorname{rescheck}(\mathbf{F}, \mathbf{p}, \ell)$ which returns a pair [α_{1}, α_{2}] such that

$$
f\left(p^{2} n+(p k-\ell) / 24\right) \equiv 0 \quad\left(\bmod 2^{\alpha_{1}}\right), \quad \text { for }\left(\frac{k}{p}\right)=1
$$

and

$$
f\left(p^{2} n+(p k-\ell) / 24\right) \equiv 0 \quad\left(\bmod 2^{\alpha_{2}}\right), \quad \text { for }\left(\frac{k}{p}\right)=-1,
$$

where p is prime and α_{1} and α_{2} are DISTINCT postive integers.

We define a function esearch($\mathbf{T}, \mathbf{p}, \ell$) which checks all eta-quotients of level 12 with bounded exponents for desired α_{1}, α_{2} for a given prime p not congruent to $\ell(\bmod 24)$.
> EL1:=esearch $(2,5,7)$:
> nops(EL1);
> etamake(EL1[1] , q, 20);

$$
\frac{(\eta(6 \tau))^{4}(\eta(4 \tau))^{2}}{(\eta(12 \tau))^{2} \eta(\tau)} q^{-\frac{7}{24}}
$$

> PRIMES:=[seq(ithprime(j),j=3..22)]:
> K:=seq([p,rescheckv2(EL1[1], p,7)],p in PRIMES);

$$
\begin{gathered}
K:=[5,[1,2]],[7,[0,1]],[11,[1,2]],[13,[2,1]],[17,[2,1]], \\
{[19,[2,1]],[23,[2,1]],[29,[1,2]],[31,[0,1]],[37,[2,1]],} \\
{[41,[2,1]],[43,[2,1]],[47,[2,1]],[53,[1,2]],[59,[1,2]],} \\
{[61,[2,1]],[67,[2,1]],[71,[2,1]],[73,[2,1]],[79,[0,1]]}
\end{gathered}
$$

CONJECTURE Let $p>3$ be prime. Define

$$
\sum_{n=0}^{\infty} f(n) q^{n+7 / 24}=\frac{(\eta(6 \tau))^{4}(\eta(4 \tau))^{2}}{(\eta(12 \tau))^{2} \eta(\tau)}
$$

Then
$f\left(p^{2} n+(p k-7) / 24\right) \equiv 0 \quad(\bmod 2), \quad$ for $\left(\frac{k}{p}\right)=1$ and $p \equiv \pm 5(24)$,
and
$f\left(p^{2} n+(p k-\ell) / 24\right) \equiv 0 \quad(\bmod 4), \quad$ for $\left(\frac{k}{p}\right)=-1$ and $p \not \equiv 7, \pm 5(24)$.

findETAcongs(ℓ, T, T2, NPL)

ℓ - prime representing a residue class mod 24
T,T2 - two positive integers
NPL - integer > 2

- Find [a, b, c] such that

$$
a x^{2}+b y^{2}+c z^{2}=\ell
$$

- Find $d f(n)=r_{a, b, c}(24 n+\ell)$ where

$$
\sum_{n=0}^{\infty} r_{a, b, c}(n) q^{n}=\sum_{x} \sum_{y} \sum_{z} q^{a x^{2}+b y^{2}+c z^{2}}
$$

- Use prodmake and etamake to check whether $\sum_{n \leq T} f(n) q^{n}$ is a likely eta-quotient, and if so compute up to $q^{T 2}$.
- Use the function rescheck to check for congruences of the form

$$
f\left(p^{2} n+(p k-\ell) / 24\right) \equiv 0 \quad\left(\bmod 2^{\alpha}\right)
$$

for all n, and that depend on $\left(\frac{k}{p}\right)=1$ (within limits).

Questions ?

THANK YOU

REFERENCES

- George E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008), 133-142.
- R. Chen and F. G. Garvan., Congruences modulo 4 for weight 3/2 eta-products, Bull. Austral. Math. Soc., doi:10.1017/S0004972720000982, to appear.
- Rong Chen and F.G. Garvan, A proof of the mod 4 unimodal sequence conjectures and related mock theta functions, preprint (40 pages).

