Maple ETA Package (Version 0.3) - Installation Instructions - UNDER CONSTRUCTION

These instructions are for Windows (64 bit) and Maple 2019. If you are using a different version of Maple just change "2019" to whatever.
  • STEP 1
    Create a Homelib directory for your maple lib (dotm) files.
    My directory is called mylib and is located here:
    C:\cygwin64\home\fgarv\maple\mylib
    
    This is what I did to create it:
    • Open command line (MSDOS)
    •  cd c:\cygwin64\home\fgarv\maple 
    •  mkdir mylib
    You should now have a new directory called mylib.
  • STEP 2
    Set up a maple.ini file. This file should be created in the directory:
    C:\Users\fgarv
    
    and it should contain two lines of code resembling something like:
    ### 06.29.2019
    Homelib:="C:\\cygwin64/home/fgarv/maple/mylib":
    libname := libname, Homelib:
    
    The value of Homelib should correspond to your Homelib. One way to do this is to use the following Maple worksheet. Now you should have a file maple.ini containing two lines of code.
  • STEP 3
    Download the file This file contains MAPLE code for setting up and saving the package. Save this file in a place where you keep your MAPLE programs. I saved it in a special directory:
    "C:\cygwin64\home\fgarv\maple\mypackages\ETA\w-setup"                         
    
    This program saves the ETA package in the mylib directory. If you want to save it in a different place you will need to edit the file.
  • STEP 4
    Install the ETA package. Start MAPLE and do something like the following.
    > libname;
     "C:\Program Files\Maple 2019\lib", ".", "C:\cygwin64\home\fgarv\maple\mylib"
    > currentdir("C:\\cygwin64\\home\\fgarv\\maple\\mypackages\\ETA\\w-setup");
                  "C:\cygwin64\home\fgarv\maple\mypackages\ETA\w-setup"
    > currentdir();
              "C:\cygwin64\home\fgarv\maple\mypackages\ETA\w-setup"
    > read "wprog-eta-06-29-2019-HOMEPC.txt":   
    >
    
    You will need to change "C:....w-setup" to the appropriate place.
    This program saves package as a file ETA.mla in the mylib dir. See
    • INSTALL THETAIDS [MW | [PDF]
  • STEP 5
    Exit MAPLE and restart it to test the package:
    > with(qseries):
    > with(ETA):
    > gpA1:=[1,2,4,3,2,-5,50,5,25,-2,100,-3]:
    > epA1:=gp2etaprod(gpA1);
                               2           3            5  
                       eta(tau)  eta(4 tau)  eta(50 tau)   
             epA1 := --------------------------------------
                               5            2             3
                     eta(2 tau)  eta(25 tau)  eta(100 tau) 
    > A1q:=etaprodtoqseries(epA1,1000):
    > gpa1:=[1,2,10,4,2,-4,5,-2]:
                  gpa1 := [1, 2, 10, 4, 2, -4, 5, -2]
    > epa1:=gp2etaprod(gpa1);
                                    2            4 
                            eta(tau)  eta(10 tau)  
                    epa1 := -----------------------
                                      4           2
                            eta(2 tau)  eta(5 tau) 
    > aq1:=etaprodtoqseries(epa1,2000):
    > gprho:=[2,2,20,4,4,-4,10,-2]:
    > eprho:=gp2etaprod(gprho);
                                      2            4
                            eta(2 tau)  eta(20 tau) 
                   eprho := ------------------------
                                      4            2
                            eta(4 tau)  eta(10 tau) 
    > G1a:=etaprodtoqseries(eprho,1001):
    > G1:=convert(series(1-G1a,q,1020),polynom):
    > etamake(G1,q,100);
                                   3           
                        eta(10 tau)  eta(2 tau)
                        -----------------------
                                              3
                        eta(20 tau) eta(4 tau) 
    > U01:=sift(A1q,q,5,0,2000):
    > etacombo:=findlincombo(U01,[seq( aq1^k,k=-2..5),seq( aq1^k*(G1),k=-2..5)],[seq( etamake((aq1)^k,q,100),k=-2..5),seq( etamake((aq1)^k*G1,q,100),k=-2..5)],q,0);
                               nx = , 16
                            # of terms , 37
                             2            4
                  53 eta(tau)  eta(10 tau) 
    etacombo := - -------------------------
                             4           2 
                   eta(2 tau)  eta(5 tau)  
    
                        8         4                   12         6
         350 eta(10 tau)  eta(tau)    1050 eta(10 tau)   eta(tau) 
       + -------------------------- - ----------------------------
                    4           8                 6           12  
          eta(5 tau)  eta(2 tau)        eta(5 tau)  eta(2 tau)    
    
                         16         8                  20         10
         1375 eta(10 tau)   eta(tau)    625 eta(10 tau)   eta(tau)  
       + ---------------------------- - ----------------------------
                     8           16                10           20  
           eta(5 tau)  eta(2 tau)        eta(5 tau)   eta(2 tau)    
    
                       3           
         13 eta(10 tau)  eta(2 tau)
       + --------------------------
                                3  
          eta(20 tau) eta(4 tau)   
    
                                  7         2           
                    75 eta(10 tau)  eta(tau)            
       - -----------------------------------------------
                               2           3           3
         eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau) 
    
                                  11         4          
                   175 eta(10 tau)   eta(tau)           
       + -----------------------------------------------
                               4           3           7
         eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau) 
    
                                  15         6           
                   125 eta(10 tau)   eta(tau)            
       - ------------------------------------------------
                               6           3           11
         eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau)  
    ;
    > provemodfuncGAMMA0UpETAid(epA1,5,etacombo,20);
    *** There were NO errors. 
    *** o EP is an MF on Gamma[0](100)
    *** o Each term in the etacombo is a  modular function on
          Gamma0(20). 
    *** o We also checked that the total order of
          each term etacombo was zero.
    *** To prove the identity U[5](EP)=etacombo we need to show
        that v[oo](ID) > 9    This means checking up to q^(10).
    Do you want to prove the identity? (yes/no)
    You entered yes.
    We verify the identity to O(q^(49)).
    We find that LHS - RHS is 
                                  / 49\
                                 O\q  /
    RESULT: The identity holds to O(q^(49)).
    CONCLUSION: This proves the identity since we had only
                to show that v[oo](ID) > 9.
    
    Do you get this? See

The url of this page is http://qseries.org/fgarvan/qmaple/ETA/install-v0p3.html.
Created by F.G. Garvan (fgarvan@ufl.edu) on Saturday, June 29, 2019.
Last update made Sun Jun 30 11:13:54 EDT 2019.


MAIL fgarvan@ufl.edu