FUNCTION :  qseries[findnonhomcombo] - tries to express a q-series as 
                                       a polynomial of degree n of a 
                                       given list of q-series.

CALLING SEQUENCE :  findnonhomcombo(L,q,n,topshift,etaoption)
                    findnonhomcombo(L,q,n,topshift)
                    findnonhomcombo(L,q,n,etaoption)
                    findnonhomcombo(L,q,n)
    
PARAMETERS :   L   - list of q-series
               q   - variable           
               n   - positive integer
               topshift - integer greater than -20      
               etaoption - yes, no

GLOBAL VARIABLE : X

SYNOPSIS :   
   
findnonhomcombo(f,L,q,n,topshift,etatoption) returns a set of potential 
set of polynomials in elements of L for the given q-series f.
The value of topshift is usually taken to be zero. However if
it appears that spurious relations are being generated then a higher
value of topshift should be taken.

If etaoption=yes then each monomial in the polynomial is %converted%
into an eta-product.

NOTE: There is a global variable X that is reassigned each time the
function is called. This variable is used to display the polynomials. 
If the list L is linearly dependent more than one linear combination
may be returned.

EXAMPLES :   

>  with(qseries):
>  c:=q*etaq(q,3,100)^9/etaq(q,1,100)^3:
>  a:=radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2(q^3,40)):
>  c:=3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100):
>  x:=radsimp(c^3/a^3):
>  z:=a:
>  N:=q-> 1 - 504*sum(n^5*q^n/(1-q^n),n=1..100):
>  findnonhomcombo(N(q)/z^6,[x],q,2);

                                 # of terms , 24

                             matrix is , 4, x, 24

              -----possible linear combinations of degree------, 2

                                     2
                            {- 8 X[1]  - 20 X[1] + 1}

>  xi:=q^2*etaq(q,49,100)/etaq(q,1,100):
>  T:=q*(etaq(q,7,100)/etaq(q,1,100))^4:
>  findnonhomcombo(T^2,[T,xi],q,7,-15,no);

                                 # of terms , 42

                             matrix is , 37, x, 42

              -----possible linear combinations of degree------, 7

         7           6           5               2               3
{343 X[2]  + 343 X[2]  + 147 X[2]  + 35 X[1] X[2]  + 49 X[1] X[2]  + X[2]

                  4          3                       2
         + 49 X[2]  + 21 X[2]  + 7 X[1] X[2] + 7 X[2] }
 


DISCUSSION :

If we define
                                  3                      3
            a = theta (q) theta (q ) + theta (q) theta (q )
                     3         3            2         2

                                               3
                                     eta(3 tau)
                              c := 3 -----------
                                       eta(tau)

                                          3
                                         c
                                   x := ----
                                          3
                                         a

                                      /infinity       \
                                      | -----     5  n|
                                      |  \       n  q |
and                      N := 1 - 504 |   )     ------|
                                      |  /           n|
                                      | -----   1 - q |
                                      \ n = 1         /

then it seems that
                                 6                2
                            N = z  (1 - 20 x - 8 x ).

If we define
                                     eta(49 tau)
                               xi := -----------
                                       eta(tau)

                                               4
                                     eta(7 tau)
                                T := -----------
                                              4
                                      eta(tau)

then it seems that

  2         2        3                   7         6         5        4        3
 T  = (35 xi  + 49 xi  + 7 xi) T + 343 xi  + 343 xi  + 147 xi  + 49 xi  + 21 xi

            2
      + 7 xi  + xi


SEE ALSO :  findhom, findnonhom, findhomcombo