FUNCTION : qseries[findnonhomcombo] - tries to express a q-series as a polynomial of degree n of a given list of q-series. CALLING SEQUENCE : findnonhomcombo(L,q,n,topshift,etaoption) findnonhomcombo(L,q,n,topshift) findnonhomcombo(L,q,n,etaoption) findnonhomcombo(L,q,n) PARAMETERS : L - list of q-series q - variable n - positive integer topshift - integer greater than -20 etaoption - yes, no GLOBAL VARIABLE : X SYNOPSIS : findnonhomcombo(f,L,q,n,topshift,etatoption) returns a set of potential set of polynomials in elements of L for the given q-series f. The value of topshift is usually taken to be zero. However if it appears that spurious relations are being generated then a higher value of topshift should be taken. If etaoption=yes then each monomial in the polynomial is %converted% into an eta-product. NOTE: There is a global variable X that is reassigned each time the function is called. This variable is used to display the polynomials. If the list L is linearly dependent more than one linear combination may be returned. EXAMPLES : > with(qseries): > c:=q*etaq(q,3,100)^9/etaq(q,1,100)^3: > a:=radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2(q^3,40)): > c:=3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100): > x:=radsimp(c^3/a^3): > z:=a: > N:=q-> 1 - 504*sum(n^5*q^n/(1-q^n),n=1..100): > findnonhomcombo(N(q)/z^6,[x],q,2); # of terms , 24 matrix is , 4, x, 24 -----possible linear combinations of degree------, 2 2 {- 8 X[1] - 20 X[1] + 1} > xi:=q^2*etaq(q,49,100)/etaq(q,1,100): > T:=q*(etaq(q,7,100)/etaq(q,1,100))^4: > findnonhomcombo(T^2,[T,xi],q,7,-15,no); # of terms , 42 matrix is , 37, x, 42 -----possible linear combinations of degree------, 7 7 6 5 2 3 {343 X[2] + 343 X[2] + 147 X[2] + 35 X[1] X[2] + 49 X[1] X[2] + X[2] 4 3 2 + 49 X[2] + 21 X[2] + 7 X[1] X[2] + 7 X[2] } DISCUSSION : If we define 3 3 a = theta (q) theta (q ) + theta (q) theta (q ) 3 3 2 2 3 eta(3 tau) c := 3 ----------- eta(tau) 3 c x := ---- 3 a /infinity \ | ----- 5 n| | \ n q | and N := 1 - 504 | ) ------| | / n| | ----- 1 - q | \ n = 1 / then it seems that 6 2 N = z (1 - 20 x - 8 x ). If we define eta(49 tau) xi := ----------- eta(tau) 4 eta(7 tau) T := ----------- 4 eta(tau) then it seems that 2 2 3 7 6 5 4 3 T = (35 xi + 49 xi + 7 xi) T + 343 xi + 343 xi + 147 xi + 49 xi + 21 xi 2 + 7 xi + xi SEE ALSO : findhom, findnonhom, findhomcombo