FUNCTION : getaprodcuspord - invariant order of a generalized-etaproduct at a cusp CALLING SEQUENCE : getaprodcuspord() getaprodcuspord(L,z) PARAMETERS : L - (geta)-list produced by GETAP2getalist z - rational or oo (cusp) SYNOPSIS : Let G be a generalized-etaproduct corresponding to the getalist L. This proc calculates invariant ord(G,z) at the cusp z. EXAMPLES : > with(thetaids): > getaprodcuspord(); ------------------------------------------------------------- getaprodcuspord(L,cusp) Let G be a generalized-etaproduct corresponding to the getalist L. This proc calculates invariant order ord(G,z) ------------------------------------------------------------- > CW40:=CUSPSANDWIDMAKE1(40): > jptmp:=1/JAC(3,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2 > /JAC(7,40,infinity)/JAC(8,40,infinity)^2/JAC(12,40,infinity)^3 > /JAC(13,40,infinity)*JAC(14,40,infinity)^2 > *JAC(15,40,infinity)^2*JAC(16,40,infinity)^2/JAC(17,40,infinity) > /JAC(20,40,infinity): > eptmp:=jac2eprod(jptmp); 2 2 2 2 2 eptmp := GETA(40, 5) GETA(40, 6) GETA(40, 14) GETA(40, 15) GETA(40, 16) / 2 3 / (GETA(40, 3) GETA(40, 7) GETA(40, 8) GETA(40, 12) GETA(40, 13) / GETA(40, 17) GETA(40, 20)) > gltmp:=GETAP2getalist(eptmp); gltmp := [[40, 3, -1], [40, 5, 2], [40, 6, 2], [40, 7, -1], [40, 8, -2], [40, 12, -3], [40, 13, -1], [40, 14, 2], [40, 15, 2], [40, 16, 2], [40, 17, -1], [40, 20, -1]] > Gamma1ModFunc(gltmp,40); 1 > ORDS:=getaprodcuspORDS(gltmp,CW40[1],CW40[2]); ORDS := [0, 0, 0, 0, -2, 3, 0, 0, 1, 0, -4, 0, -2, 0, 0, 3, 1, 0, 0, 0, 0, 0, -2, 0, 1, -2, 1, -2, 1, 3, 3, 1, 1, -2, -2, 0, 1, -2, 1, -4, 0, 0, 0, 0, 1, 1, 1, 0] > BMAT:=matrix(nops(CW40[1]),4): > for j from 1 to nops(CW40[1]) do > BMAT[j,1]:= CW40[1][j]: > BMAT[j,2]:= getaprodcuspord(gltmp,CW40[1][j]): > BMAT[j,3]:= CW40[2][j]: > BMAT[j,4]:= ORDS[j]: > od: > op(BMAT); [ oo 0 1 0] [ ] [ 0 0 40 0] [ ] [1/2 0 20 0] [ ] [1/3 0 40 0] [ ] [1/4 -1/5 10 -2] [ ] [1/5 3/8 8 3] [ ] [1/6 0 20 0] [ ] [1/7 0 40 0] [ ] [1/8 1/5 5 1] [ ] [1/9 0 40 0] [ ] [1/10 -1 4 -4] [ ] [1/11 0 40 0] [ ] [1/12 -1/5 10 -2] [ ] [1/13 0 40 0] [ ] [1/14 0 20 0] [ ] [1/15 3/8 8 3] [ ] [1/16 1/5 5 1] [ ] [1/17 0 40 0] [ ] [1/18 0 20 0] [ ] [1/19 0 40 0] [ ] [1/20 0 2 0] [ ] [2/5 0 8 0] [ ] [3/4 -1/5 10 -2] [ ] [3/5 0 8 0] [ ] [3/8 1/5 5 1] [ ] [3/10 -1/2 4 -2] [ ] [3/16 1/5 5 1] [ ] [3/20 -1 2 -2] [ ] [3/40 1 1 1] [ ] [4/5 3/8 8 3] [ ] [4/15 3/8 8 3] [ ] [5/8 1/5 5 1] [ ] [7/8 1/5 5 1] [ ] [7/10 -1/2 4 -2] [ ] [7/12 -1/5 10 -2] [ ] [7/15 0 8 0] [ ] [7/16 1/5 5 1] [ ] [7/20 -1 2 -2] [ ] [7/40 1 1 1] [ ] [9/10 -1 4 -4] [ ] [9/20 0 2 0] [ ] [9/40 0 1 0] [ ] [ 11 ] [ -- 0 1 0] [ 40 ] [ ] [ 13 ] [ -- 0 8 0] [ 15 ] [ ] [ 13 ] [ -- 1/5 5 1] [ 16 ] [ ] [ 13 ] [ -- 1 1 1] [ 40 ] [ ] [ 17 ] [ -- 1 1 1] [ 40 ] [ ] [ 19 ] [ -- 0 1 0] [ 40 ] DISCUSSION : The four columns of the matrix correspond to z=cusp, ord(G,z), width(z), ORD(G,z)=ord(G,z)*width(z) SEE ALSO : getaprodcuspORDS, getacuspord