FUNCTION :   getaprodcuspord  - invariant order  of a generalized-etaproduct at a cusp


CALLING SEQUENCE :  getaprodcuspord()                               
                    getaprodcuspord(L,z)                               
                    

PARAMETERS :  L - (geta)-list produced by GETAP2getalist
              z - rational or oo (cusp)


SYNOPSIS :   Let G be a generalized-etaproduct corresponding to the    
             getalist L. This proc calculates invariant ord(G,z) at the cusp z.
EXAMPLES :   

>  with(thetaids):

>  getaprodcuspord();
-------------------------------------------------------------
getaprodcuspord(L,cusp)                                     
   Let G be a generalized-etaproduct corresponding to the    
   getalist L. This proc calculates invariant order ord(G,z)
-------------------------------------------------------------

>  CW40:=CUSPSANDWIDMAKE1(40):
>  jptmp:=1/JAC(3,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2
>        /JAC(7,40,infinity)/JAC(8,40,infinity)^2/JAC(12,40,infinity)^3
>        /JAC(13,40,infinity)*JAC(14,40,infinity)^2
>        *JAC(15,40,infinity)^2*JAC(16,40,infinity)^2/JAC(17,40,infinity)
>        /JAC(20,40,infinity):
>  eptmp:=jac2eprod(jptmp);
                    2            2             2             2             2
eptmp := GETA(40, 5)  GETA(40, 6)  GETA(40, 14)  GETA(40, 15)  GETA(40, 16)

       /                                     2             3
      /  (GETA(40, 3) GETA(40, 7) GETA(40, 8)  GETA(40, 12)  GETA(40, 13)
     /

    GETA(40, 17) GETA(40, 20))

>  gltmp:=GETAP2getalist(eptmp);
gltmp := [[40, 3, -1], [40, 5, 2], [40, 6, 2], [40, 7, -1], [40, 8, -2],

    [40, 12, -3], [40, 13, -1], [40, 14, 2], [40, 15, 2], [40, 16, 2],

    [40, 17, -1], [40, 20, -1]]

>  Gamma1ModFunc(gltmp,40);
                                       1

>  ORDS:=getaprodcuspORDS(gltmp,CW40[1],CW40[2]);
ORDS := [0, 0, 0, 0, -2, 3, 0, 0, 1, 0, -4, 0, -2, 0, 0, 3, 1, 0, 0, 0, 0, 0,

    -2, 0, 1, -2, 1, -2, 1, 3, 3, 1, 1, -2, -2, 0, 1, -2, 1, -4, 0, 0, 0, 0, 1,

    1, 1, 0]

>  BMAT:=matrix(nops(CW40[1]),4):
> for j from 1 to nops(CW40[1]) do
> BMAT[j,1]:=  CW40[1][j]: 
> BMAT[j,2]:=  getaprodcuspord(gltmp,CW40[1][j]):                           
> BMAT[j,3]:=  CW40[2][j]:                             
> BMAT[j,4]:=  ORDS[j]:
> od:
> op(BMAT);
                           [ oo      0       1     0]
                           [                        ]
                           [ 0       0      40     0]
                           [                        ]
                           [1/2      0      20     0]
                           [                        ]
                           [1/3      0      40     0]
                           [                        ]
                           [1/4     -1/5    10    -2]
                           [                        ]
                           [1/5     3/8      8     3]
                           [                        ]
                           [1/6      0      20     0]
                           [                        ]
                           [1/7      0      40     0]
                           [                        ]
                           [1/8     1/5      5     1]
                           [                        ]
                           [1/9      0      40     0]
                           [                        ]
                           [1/10     -1      4    -4]
                           [                        ]
                           [1/11     0      40     0]
                           [                        ]
                           [1/12    -1/5    10    -2]
                           [                        ]
                           [1/13     0      40     0]
                           [                        ]
                           [1/14     0      20     0]
                           [                        ]
                           [1/15    3/8      8     3]
                           [                        ]
                           [1/16    1/5      5     1]
                           [                        ]
                           [1/17     0      40     0]
                           [                        ]
                           [1/18     0      20     0]
                           [                        ]
                           [1/19     0      40     0]
                           [                        ]
                           [1/20     0       2     0]
                           [                        ]
                           [2/5      0       8     0]
                           [                        ]
                           [3/4     -1/5    10    -2]
                           [                        ]
                           [3/5      0       8     0]
                           [                        ]
                           [3/8     1/5      5     1]
                           [                        ]
                           [3/10    -1/2     4    -2]
                           [                        ]
                           [3/16    1/5      5     1]
                           [                        ]
                           [3/20     -1      2    -2]
                           [                        ]
                           [3/40     1       1     1]
                           [                        ]
                           [4/5     3/8      8     3]
                           [                        ]
                           [4/15    3/8      8     3]
                           [                        ]
                           [5/8     1/5      5     1]
                           [                        ]
                           [7/8     1/5      5     1]
                           [                        ]
                           [7/10    -1/2     4    -2]
                           [                        ]
                           [7/12    -1/5    10    -2]
                           [                        ]
                           [7/15     0       8     0]
                           [                        ]
                           [7/16    1/5      5     1]
                           [                        ]
                           [7/20     -1      2    -2]
                           [                        ]
                           [7/40     1       1     1]
                           [                        ]
                           [9/10     -1      4    -4]
                           [                        ]
                           [9/20     0       2     0]
                           [                        ]
                           [9/40     0       1     0]
                           [                        ]
                           [ 11                     ]
                           [ --      0       1     0]
                           [ 40                     ]
                           [                        ]
                           [ 13                     ]
                           [ --      0       8     0]
                           [ 15                     ]
                           [                        ]
                           [ 13                     ]
                           [ --     1/5      5     1]
                           [ 16                     ]
                           [                        ]
                           [ 13                     ]
                           [ --      1       1     1]
                           [ 40                     ]
                           [                        ]
                           [ 17                     ]
                           [ --      1       1     1]
                           [ 40                     ]
                           [                        ]
                           [ 19                     ]
                           [ --      0       1     0]
                           [ 40                     ]


DISCUSSION :
The four columns of the matrix correspond to
z=cusp, ord(G,z), width(z),  ORD(G,z)=ord(G,z)*width(z)


SEE ALSO : getaprodcuspORDS, 
getacuspord