FUNCTION : jacnormalid - Renormalizes a sum of jacprods by dividing by the term with the lowest power of q. CALLING SEQUENCE : jacnormalid() jacnormalid(jcombo) PARAMETERS : jcombo - sum of jacprods SYNOPSIS : Renormalizes a sum of jacprods by dividing by the term with the lowest power of q. In the event of a tie it returns term with the lowest nops. EXAMPLES : > with(qseries): > with(thetaids): > jacnormalid(); ------------------------------------------------------------- jacnormalid(jcombo) Renormalizes a sum of jacprods by dividing by the term with the lowest power of q. ------------------------------------------------------------- > E:=n->etaq(q,n,500): > f:=(a,b,T)->add(a^(j*(j+1)/2)*b^(j*(j-1)/2),j=-T..T): > CHOIID1:=E(4)^2*E(10)^4*E(20)/E(2)/E(5)^2/E(8)/f(-q^2,-q^18,20) /f(-q^16,-q^24,20) -( E(5)*E(10)*f(-q^4,-q^6,20)/f(-q^2,-q^3,20)/f(-q^2,-q^8,20) -q^3*subs(q=-q^20,E(1))*E(40)*f(-q^8,-q^32,20)/f(q^4,-q^16,20) /f(-q^16,-q^24,20) +q^6*E(40)*E(80)*f(-q^8,-q^32,20)/f(-q^16,-q^24,20) /f(-q^32,-q^48,20)): > JJ:= qs2jaccombo(CHOIID1,q,200); 9 JJ := JAC(0, 40, infinity) JAC(4, 40, infinity) JAC(10, 40, infinity) /JAC(20, 40, infinity)\3/2 / JAC(12, 40, infinity) |---------------------| / ( \JAC(0, 40, infinity) / / 2 2 JAC(2, 40, infinity) JAC(5, 40, infinity) JAC(6, 40, infinity) 2 JAC(14, 40, infinity) JAC(15, 40, infinity) JAC(16, 40, infinity) 3 2 JAC(0, 10, infinity) JAC(4, 10, infinity) 3 JAC(18, 40, infinity) ) - ------------------------------------------ + q 2 JAC(2, 10, infinity) JAC(3, 10, infinity) 2 JAC(4, 80, infinity) JAC(0, 80, infinity) JAC(32, 80, infinity) /JAC(40, 80, infinity)\1/2 / JAC(36, 80, infinity) |---------------------| / ( \JAC(0, 80, infinity) / / 2 2 JAC(16, 80, infinity) JAC(24, 80, infinity) ) - 6 2 /JAC(40, 80, infinity)\1/2 q JAC(8, 80, infinity) JAC(0, 80, infinity) |---------------------| \JAC(0, 80, infinity) / ------------------------------------------------------------------------ JAC(16, 80, infinity) JAC(24, 80, infinity) > JJ2:=jacnormalid(JJ); 2 9 JJ2 := - JAC(2, 10, infinity) JAC(3, 10, infinity) JAC(0, 40, infinity) JAC(4, 40, infinity) JAC(10, 40, infinity) JAC(12, 40, infinity) /JAC(20, 40, infinity)\3/2 / 3 |---------------------| / (JAC(0, 10, infinity) JAC(4, 10, infinity) \JAC(0, 40, infinity) / / 2 2 JAC(2, 40, infinity) JAC(5, 40, infinity) JAC(6, 40, infinity) 2 JAC(14, 40, infinity) JAC(15, 40, infinity) JAC(16, 40, infinity) 2 2 JAC(18, 40, infinity) ) + 1 - JAC(2, 10, infinity) JAC(3, 10, infinity) 3 2 q JAC(4, 80, infinity) JAC(0, 80, infinity) JAC(32, 80, infinity) /JAC(40, 80, infinity)\1/2 / JAC(36, 80, infinity) |---------------------| / ( \JAC(0, 80, infinity) / / 3 2 JAC(0, 10, infinity) JAC(4, 10, infinity) JAC(16, 80, infinity) 2 2 6 JAC(24, 80, infinity) ) + JAC(2, 10, infinity) JAC(3, 10, infinity) q 2 /JAC(40, 80, infinity)\1/2 / JAC(8, 80, infinity) JAC(0, 80, infinity) |---------------------| / \JAC(0, 80, infinity) / / 3 (JAC(0, 10, infinity) JAC(4, 10, infinity) JAC(16, 80, infinity) JAC(24, 80, infinity)) SEE ALSO : jac2eprod, jac2getaprod, jac2getaprod