FUNCTION : v0 - 2*ORD(G,0) CALLING SEQUENCE : v0(L,N) PARAMETERS : L - (geta)-list produced by GETAP2getalist and corresponds to a generalized eta-quotient on Gamma[1](N). N - positive integer SYNOPSIS : Returns 2*ORD(G,0) where G is the generalized eta-quotient corresponding to the (geta)-list L with respect to the group GAMMA[1](N). EXAMPLES : > with(thetaids): > v0(); ------------------------------------------------------------- v0(L,N) L is a getalist; i.e. L=[[b1,a1,c1],....] Let G be the corresponding generalized eta-function. v0(L,N) returns 2*ORD(G,0, Gamma[1](N)) ------------------------------------------------------------- > jterm:=q^3*JAC(2,40,infinity)^2/JAC(0,40,infinity)^12*JAC(3,40,infinity) > *JAC(5,40,infinity)^2*JAC(6,40,infinity)*JAC(7,40,infinity) > /JAC(12,40,infinity)*JAC(13,40,infinity)*JAC(14,40,infinity) > *JAC(15,40,infinity)^2*JAC(17,40,infinity)*JAC(18,40,infinity)^2 > /JAC(20,40,infinity); 3 2 2 jterm := q JAC(2, 40, infinity) JAC(3, 40, infinity) JAC(5, 40, infinity) JAC(6, 40, infinity) JAC(7, 40, infinity) JAC(13, 40, infinity) 2 JAC(14, 40, infinity) JAC(15, 40, infinity) JAC(17, 40, infinity) 2 / 12 JAC(18, 40, infinity) / (JAC(0, 40, infinity) JAC(12, 40, infinity) / JAC(20, 40, infinity)) > eprod:=jac2eprod(jterm); 2 2 eprod := GETA(40, 2) GETA(40, 3) GETA(40, 5) GETA(40, 6) GETA(40, 7) 2 2 GETA(40, 13) GETA(40, 14) GETA(40, 15) GETA(40, 17) GETA(40, 18) /( GETA(40, 12) GETA(40, 20)) > GL:=GETAP2getalist(eprod); GL := [[40, 2, 2], [40, 3, 1], [40, 5, 2], [40, 6, 1], [40, 7, 1], [40, 12, -1], [40, 13, 1], [40, 14, 1], [40, 15, 2], [40, 17, 1], [40, 18, 2], [40, 20, -1]] > getaprodcuspord(GL,0); 1/40 > getaprodcuspord(GL,0)*cuspwid1(0,1,40); 1 > v0(GL,40); 2 > getaprodcuspord(GL,oo); 3 > getaprodcuspord(GL,oo)*cuspwid1(1,0,40); 3 > vinf(GL,40); 6 DISCUSSION : We see that v0(eprod,40) = 2 = 2*ORD(eprod,40) SEE ALSO : jac2eprod, GETAP2getalist, rmcofjac, vinf, getaprodcuspord