FUNCTION :  qseries[findpoly] - tries to find a polynomial relation between
                                two given q-series with degrees specified.

CALLING SEQUENCE :  findpoly(x,y,q,deg1,deg2,check)
                    findpoly(x,y,q,deg1,deg2)

PARAMETERS :   x,y   -  q-series
               q   - variable           
               deg1,deg2   - positive integers
               check - positive integer 

GLOBAL VARIABLES : X, Y

SYNOPSIS :   
   
findpoly(x,y,q,deg1,deg2,check) returns a possible polynomial in X,Y
(with corresponding degrees deg1, deg2) which is satisfied by x,y.
                                                        check
If check is assigned then the relation is checked to O(q     ).

EXAMPLES :   

> with(qseries):
> read findpoly:
> x1 := radsimp(theta2(q,100)^2/theta2(q^3,40)^2):
> x2 := theta3(q,100)^2/theta3(q^3,40)^2:
> x := x1+x2:
> c := q*etaq(q,3,100)^9/etaq(q,1,100)^3:
> a := radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2(q^3,40)):
> c := 3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100):
> y := radsimp(c^3/a^3):
> m := x2:                                              
> findpoly(x,y,q,3,1,60);
WARNING: X,Y are global.
                                  dims , 8, 18

                               The polynomial is

                                   3               2
                            (X + 6)  Y - 27 (X + 2)

                             Checking to order, 60

                                        59
                                     O(q  )

                                   3               2
                            (X + 6)  Y - 27 (X + 2)

> findpoly(m,y,q,6,1,50);
WARNING: X,Y are global.
                                  dims , 14, 24

                               The polynomial is

                           2           3                    4
                  - 1/27 (X  + 6 X - 3)  Y + (X - 1) (X + 1)

                             Checking to order, 50

                                        51
                                     O(q  )

                           2           3                    4
                  - 1/27 (X  + 6 X - 3)  Y + (X - 1) (X + 1)


DISCUSSION :

If we define
                                  3                      3
            a = theta (q) theta (q ) + theta (q) theta (q )
                     3         3            2         2

                                               3
                                     eta(3 tau)
                              c := 3 -----------
                                       eta(tau)

                                          3
                                         c
                                   y := ----
                                          3
                                         a

then it appears that
                              3              2
                             c        (x + 2)
                            ---- = 27 --------
                              3              3
                             a        (x + 6)

                                                     4
                                      (m - 1) (m + 1)
                                 = 27 ----------------.
                                         2           3
                                       (m  + 6 m - 3)

where
                                        2             2
                               theta2(q)     theta3(q)
                         x  = ----------- + -----------
                                      3 2           3 2
                              theta2(q )    theta3(q )

                                               2
                                      theta3(q)
and                             m  = -----------.
                                             3 2
                                     theta3(q )


SEE ALSO :  findhom, findnonhom, findhomcombo, findnonhomcombo