FUNCTION : jac2getacombo - Convert a linear combination of jacprods into a linear combination of getaprods (using standard eta-notation) CALLING SEQUENCE : jac2getacombo() jac2getacombo(jcombo) PARAMETERS : jcombo - sum of jacprods SYNOPSIS : This function uses jac2getaprod to convert a linear combination of jacprods into a linear combination of getaprods (using standard eta-notation) EXAMPLES : > with(thetaids): > with(qseries): > jac2getacombo(); ------------------------------------------------------------- jac2getacombo(JJ) This function converts a combination of jacprods into a combination of getaprods. ------------------------------------------------------------- > E:=n->etaq(q,n,500): > f:=(a,b,T)->add(a^(j*(j+1)/2)*b^(j*(j-1)/2),j=-T..T): > CHOIID1:=E(4)^2*E(10)^4*E(20)/E(2)/E(5)^2/E(8)/f(-q^2,-q^18,20) > /f(-q^16,-q^24,20) > -( E(5)*E(10)*f(-q^4,-q^6,20)/f(-q^2,-q^3,20)/f(-q^2,-q^8,20) > -q^3*subs(q=-q^20,E(1))*E(40)*f(-q^8,-q^32,20)/f(q^4,-q^16,20) > /f(-q^16,-q^24,20) > +q^6*E(40)*E(80)*f(-q^8,-q^32,20)/f(-q^16,-q^24,20) > /f(-q^32,-q^48,20)): > JJ:= qs2jaccombo(CHOIID1,q,200); 15/2 JJ := JAC(0, 40, infinity) JAC(4, 40, infinity) JAC(10, 40, infinity) 3/2 / 2 JAC(12, 40, infinity) JAC(20, 40, infinity) / (JAC(2, 40, infinity) / 2 JAC(5, 40, infinity) JAC(6, 40, infinity) JAC(14, 40, infinity) 2 2 JAC(15, 40, infinity) JAC(16, 40, infinity) JAC(18, 40, infinity) ) 3 JAC(0, 10, infinity) JAC(4, 10, infinity) 3 - ------------------------------------------ + q JAC(4, 80, infinity) 2 JAC(2, 10, infinity) JAC(3, 10, infinity) 3/2 JAC(0, 80, infinity) JAC(32, 80, infinity) JAC(36, 80, infinity) 1/2 / 2 2 JAC(40, 80, infinity) / (JAC(16, 80, infinity) JAC(24, 80, infinity) / ) 6 3/2 1/2 q JAC(8, 80, infinity) JAC(0, 80, infinity) JAC(40, 80, infinity) - ------------------------------------------------------------------------ JAC(16, 80, infinity) JAC(24, 80, infinity) > JJ2:=jacnormalid(JJ); 2 15/2 JJ2 := - JAC(2, 10, infinity) JAC(3, 10, infinity) JAC(0, 40, infinity) JAC(4, 40, infinity) JAC(10, 40, infinity) JAC(12, 40, infinity) 3/2 / 3 JAC(20, 40, infinity) / (JAC(0, 10, infinity) JAC(4, 10, infinity) / 2 2 JAC(2, 40, infinity) JAC(5, 40, infinity) JAC(6, 40, infinity) 2 JAC(14, 40, infinity) JAC(15, 40, infinity) JAC(16, 40, infinity) 2 2 3 JAC(18, 40, infinity) ) + 1 - JAC(2, 10, infinity) JAC(3, 10, infinity) q 3/2 JAC(4, 80, infinity) JAC(0, 80, infinity) JAC(32, 80, infinity) 1/2 / 3 JAC(36, 80, infinity) JAC(40, 80, infinity) / (JAC(0, 10, infinity) / 2 2 JAC(4, 10, infinity) JAC(16, 80, infinity) JAC(24, 80, infinity) ) + 2 6 JAC(2, 10, infinity) JAC(3, 10, infinity) q JAC(8, 80, infinity) 3/2 1/2 / 3 JAC(0, 80, infinity) JAC(40, 80, infinity) / (JAC(0, 10, infinity) / JAC(4, 10, infinity) JAC(16, 80, infinity) JAC(24, 80, infinity)) > jac2getacombo(JJ2); 2 - eta[10, 2](tau) eta[10, 3](tau) eta(40 tau) eta[40, 4](tau) eta[40, 10](tau) 3/2 / eta[40, 12](tau) eta[40, 20](tau) / (eta(10 tau) eta[10, 4](tau) / 2 2 eta[40, 2](tau) eta[40, 5](tau) eta[40, 6](tau) eta[40, 14](tau) 2 2 eta[40, 15](tau) eta[40, 16](tau) eta[40, 18](tau) ) + 1 - 2 eta[10, 2](tau) eta[10, 3](tau) eta[80, 4](tau) eta(80 tau) 1/2 / eta[80, 32](tau) eta[80, 36](tau) eta[80, 40](tau) / (eta(10 tau) / 2 2 2 eta[10, 4](tau) eta[80, 16](tau) eta[80, 24](tau) ) + eta[10, 2](tau) 1/2 eta[10, 3](tau) eta[80, 8](tau) eta(80 tau) eta[80, 40](tau) /( eta(10 tau) eta[10, 4](tau) eta[80, 16](tau) eta[80, 24](tau)) > JJ3:=mixedjac2jac(JJ2): > jac2getacombo(JJ3); 2 3 - eta[40, 3](tau) eta[40, 7](tau) eta[40, 8](tau) eta[40, 12](tau) / 2 eta[40, 13](tau) eta[40, 17](tau) eta[40, 20](tau) / (eta[40, 5](tau) / 2 2 2 2 eta[40, 6](tau) eta[40, 14](tau) eta[40, 15](tau) eta[40, 16](tau) ) + 1 3 2 2 - eta[80, 32](tau) eta[80, 8](tau) eta[80, 2](tau) eta[80, 3](tau) 2 eta[80, 7](tau) eta[80, 12](tau) eta[80, 13](tau) eta[80, 17](tau) 2 2 eta[80, 18](tau) eta[80, 22](tau) eta[80, 23](tau) eta[80, 27](tau) 2 2 / eta[80, 28](tau) eta[80, 33](tau) eta[80, 37](tau) eta[80, 38](tau) / ( / 3 3 eta[80, 16](tau) eta[80, 24](tau) eta[80, 6](tau) eta[80, 10](tau) eta[80, 14](tau) eta[80, 20](tau) eta[80, 26](tau) eta[80, 30](tau) 2 3 2 eta[80, 34](tau)) + eta[80, 32](tau) eta[80, 8](tau) eta[80, 2](tau) 2 eta[80, 3](tau) eta[80, 7](tau) eta[80, 12](tau) eta[80, 13](tau) 2 2 eta[80, 17](tau) eta[80, 18](tau) eta[80, 22](tau) eta[80, 23](tau) 2 eta[80, 27](tau) eta[80, 28](tau) eta[80, 33](tau) eta[80, 37](tau) 2 / 2 2 eta[80, 38](tau) / (eta[80, 4](tau) eta[80, 16](tau) eta[80, 24](tau) / eta[80, 36](tau) eta[80, 6](tau) eta[80, 10](tau) eta[80, 14](tau) eta[80, 20](tau) eta[80, 26](tau) eta[80, 30](tau) eta[80, 34](tau)) SEE ALSO : jac2eprod, jac2getaprod, jacnormalid