FUNCTION : findtype5 - find type 5 identities CALLING SEQUENCE : findtype5(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype5(T) cycles through symbolic expressions _GM(a)_GM(b) + c _HM(a)_HM(b) where 2 ≤ n ≤ T, ab=n, (a,b)=1, b < a, c in {-1,1}, and (*) GE(a) + GE(b) - (HE(a) + HE(b)) in Z and least one of a, b is even, using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. Condition (*) eliminates the case of fractional powers of q. The procedure also returns a list of [a,b,c] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype5(4); *** There were NO errors. Each term was modular function on Gamma1(80). Also -mintotord=64. To prove the identity we need to check up to O(q^(66)). To be on the safe side we check up to O(q^(224)). *** The identity below is PROVED! [1, 4, 1] 2 eta(4 tau) _GM(1) _GM(4) + _HM(1) _HM(4) = --------------------- eta(8 tau) eta(2 tau) [[1, 4, 1]] DISCUSSION : For G,H defined G*(6) H*(1) - G*(1) H*(6) is an eta-product and the identity is proved. SEE ALSO : findtype5, findtype2, findtype3, findtype5, findtype5, findtype6, findtype7, findtype8, findtype9, findtype50