FUNCTION : findtype8 - find type 8 identities CALLING SEQUENCE : findtype8(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype8(T) cycles through symbolic expressions _G(1)^a_H(a) + c _H(1)^a_G(a) where 2 ≤ a ≤ c in {-1,1}, using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. The procedure also returns a list of [a,c] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype8(12); *** There were NO errors. Each term was modular function on Gamma1(15). Also -mintotord=4. To prove the identity we need to check up to O(q^(6)). To be on the safe side we check up to O(q^(34)). *** The identity below is PROVED! [3, -1] 3 3 3 3 eta(15 tau) _G(1) _H(3) - _H(1) _G(3) = ------------------------------ eta(5 tau) eta(3 tau) eta(tau) "n=", 10 WARNING: There were 2 ebasethreshold problems. See the global array EBL. [[3, -1]] DISCUSSION : For G,H defined G(1)^3 H(3) - H(1)^3 G(3), is an eta-product and the identity is proved. SEE ALSO : findtype6, findtype2, findtype3, findtype6, findtype6, findtype6, findtype7, findtype8, findtype9, findtype60