FUNCTION : findtype10 - find type 10 identities CALLING SEQUENCE : findtype10(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL10,EBL SYNOPSIS : findtype10(T) cycles through symbolic expressions _G(a[1]) _H(b[1]) + c[1] _H(a[1]) _G(b[1]) --------------------------------------------- _G(a[2]) _HM(b[2]) + c[2] _H(a[2]) _GM(b[2]) where 2 ≤ n ≤ T, a[1]b[1]=a[2]b[2]=n, (a[1],b[1],a[2],b[2])=1, a[1] > b[1], b[2] < a[2], c[1],c[2] in {-1,1}, and (*) GE(a[1]) + HE(b[1]) - (HE(a[1]) + GE(b[1])) in Z, GE(a[2]) + HE(b[2]) - (HE(a[2]) + GE(b[2])) in Z, and [a[1],b[1],c[1]] is not an element for the list {myramtype1 (product earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a[1],b[1],c[1],a[2],b[2],c[2]] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype10(12); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=56. To prove the identity we need to check up to O(q^(58)). To be on the safe side we check up to O(q^(176)). *** The identity below is PROVED! [6, 1, -1, 6, 1, 1] 3 2 _G(6) _H(1) - _H(6) _G(1) eta(6 tau) eta(4 tau) eta(tau) --------------------------- = ----------------------------------- _G(6) _HM(1) + _H(6) _GM(1) 2 3 eta(12 tau) eta(3 tau) eta(2 tau) "n=", 10 [[6, 1, -1, 6, 1, 1]] DISCUSSION : For G,H defined G(6) H(1) - H(6) G(1) ----------------------- G(6) H*(1) + H(6) G*(1) is an eta-product and the identity is proved. SEE ALSO : findtype1, findtype2, findtype3, findtype4, findtype5, findtype6, findtype7, findtype8, findtype9, findtype10