FUNCTION : findtype7 - find type 7 identities CALLING SEQUENCE : findtype7(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype7(T) cycles through symbolic expressions _GM(a)_G(b) + c _HM(a)_H(b) where 2 ≤ n ≤ T, ab=n, (a,b)=1, b < a, c in {-1,1}, (*) GE(a) + GE(b) - (HE(a) + HE(b)) in Z and least one of a, b is even, using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. The procedure also returns a list of [a,b,c] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype7(12); *** There were NO errors. Each term was modular function on Gamma1(180). Also -mintotord=288. To prove the identity we need to check up to O(q^(290)). To be on the safe side we check up to O(q^(648)). *** The identity below is PROVED! [9, 1, -1] _GM(1) _G(9) - _HM(1) _H(9) = 2 eta(18 tau) eta(12 tau) eta(tau) -------------------------------------------- eta(36 tau) eta(9 tau) eta(6 tau) eta(2 tau) "n=", 10 [[1, 9, -1]] DISCUSSION : For G,H defined G*(1) G(9) - H*(1) H (9), is an eta-product and the identity is proved. SEE ALSO : findtype6, findtype2, findtype3, findtype6, findtype6, findtype6, findtype7, findtype8, findtype9, findtype60