FUNCTION : findtype1 - find type 1 identities CALLING SEQUENCE : findtype1(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype1(T) cycles through symbolic expressions _ G(a)_H(b) + c _G(b)_H(a) where 2 ≤ n ≤ T, ab=n, (a,b)=1, b < a, c in {-1,1}, and (*) GE(a) + HE(b) - (GE(b) + HE(a)) in Z using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. Condition (*) eliminates the case of fractional powers of q. The procedure also returns a list of [a,b,c] which give identities. NOTE: Output should be assigned myramtype1. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j): > GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j): > GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j): > G(1),H(1); (13/60) JAC(0, 10, infinity) q JAC(0, 10, infinity) -----------------------------, ----------------------------- (23/60) JAC(3, 10, infinity) q JAC(1, 10, infinity) > jac2getaprod(G(1)),jac2getaprod(H(1)); 1 1 ---------------, --------------- eta[10, 1](tau) eta[10, 3](tau) > myramtype1:=findtype1(6); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to O(q^(42)). To be on the safe side we check up to O(q^(160)). *** The identity below is PROVED! [6, 1, -1] _G(6) _H(1) - _G(1) _H(6) = 3 eta(30 tau) eta(12 tau) eta(5 tau) eta(4 tau) ------------------------------------------------ 2 2 eta(60 tau) eta(15 tau) eta(10 tau) eta(6 tau) [[6, 1, -1]] DISCUSSION : For G,H defined G(6) H(1) - G(1) H(6) is an eta-product and the identity is proved. SEE ALSO : findtype1, findtype2, findtype3, findtype4, findtype5, findtype6, findtype7, findtype8, findtype9, findtype10