FUNCTION : findtype2 - find type 2 identities CALLING SEQUENCE : findtype2(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype2(T) cycles through symbolic expressions _G(a) _G(b) + c _H(a)_H(b) where 2 ≤ n ≤ T, ab=n, (a,b)=1, b < a, c in {-1,1}, and (*) GE(a) + GE(b) - (HE(a) + HE(b)) in Z using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. Condition (*) eliminates the case of fractional powers of q. The procedure also returns a list of [a,b,c] which give identities. NOTE: Output should be assigned myramtype2. EXAMPLES : > wit(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j): > GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j): > GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j): > myramtype2:=findtype2(6); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to O(q^(42)). To be on the safe side we check up to O(q^(160)). *** The identity below is PROVED! [2, 3, -1] _G(2) _G(3) - _H(2) _H(3) = 3 eta(15 tau) eta(12 tau) eta(10 tau) eta(4 tau) ----------------------------------------------- 2 2 eta(30 tau) eta(20 tau) eta(5 tau) eta(2 tau) [[2, 3, -1]] DISCUSSION : For G,H defined G(2) G(3) - H(2) H(3) is an eta-product and the identity is proved. SEE ALSO : findtype1, findtype2, findtype3, findtype4, findtype5, findtype6, findtype7, findtype8, findtype9, findtype10