FUNCTION : findtype9 - find type 9 identities CALLING SEQUENCE : findtype9() PARAMETERS : NONE GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL9,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype9(T) cycles through symbolic expressions _G(1)^a_H(1)^b - _H(1)^a_G(1)^b + x where x is 0 or -1, with a, b smallest such positive integers, using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. The procedure also returns a list of [a,b,x] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype9(12); *** There were NO errors. Each term was modular function on Gamma1(5). Also -mintotord=2. To prove the identity we need to check up to O(q^(4)). To be on the safe side we check up to O(q^(12)). *** The identity below is PROVED! [11, 1, 1] 6 11 11 11 eta(5 tau) _G(1) _H(1) - _H(1) _G(1) - 1 = -------------- 6 eta(tau) [[11, 1, 1]] DISCUSSION : For G,H defined G(1)^11 H(1) - H(1)^11 G(1) - 1, is an eta-product and the identity is proved. SEE ALSO : findtype1, findtype2, findtype3, findtype6, findtype6, findtype6, findtype7, findtype8, findtype9, findtype10