FUNCTION :  findtype1 - find type 1 identities
                

CALLING SEQUENCE :  findtype1(T)
                    

PARAMETERS :   T - positive integer  
                  -            

GLOBAL VARIABLES : 
        xprint,NEWJACID,RJID,SYMJID,
        TT1,TT2,PROVEDFL1,EBL

SYNOPSIS :   
        Before running the functions G,H,GM,HM,GE,HE must be defined.   

        findtype1(T) cycles through symbolic expressions
        
        _   G(a)_H(b) + c _G(b)_H(a)
        
        where  2 ≤ n ≤ T, ab=n, (a,b)=1,  b < a, c in {-1,1},  and
        
        (*)    GE(a) + HE(b) - (GE(b) + HE(a))  in Z
        
        using CHECKRAMIDF to check whether the expression corresponds to a 
        likely eta-product. 
        If proveit is true then provemodfuncidBATCH (from theataids 
        package) is used to prove it. Condition (*) eliminates the case of fractional 
        powers of q.  The procedure also returns a list of [a,b,c] which 
        give identities.
        NOTE: Output should be assigned myramtype1.

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  xprint:=false: proveit:=true:

>  G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j):
>  GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j):

>  GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j):
>  G(1),H(1);
                                  (13/60)                     
      JAC(0, 10, infinity)       q        JAC(0, 10, infinity)
  -----------------------------, -----------------------------
   (23/60)                           JAC(3, 10, infinity)     
  q        JAC(1, 10, infinity)                               
>  jac2getaprod(G(1)),jac2getaprod(H(1));
                       1                1       
                ---------------, ---------------
                eta[10, 1](tau)  eta[10, 3](tau)
>  myramtype1:=findtype1(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(60). Also -mintotord=40. To prove the identity
    we need to  check up to O(q^(42)).
    To be on the safe side we check up to O(q^(160)).
*** The identity below is PROVED!
[6, 1, -1]
       _G(6) _H(1) - _G(1) _H(6) = 

                     3                                   
          eta(30 tau)  eta(12 tau) eta(5 tau) eta(4 tau) 
         ------------------------------------------------
                    2                        2           
         eta(60 tau)  eta(15 tau) eta(10 tau)  eta(6 tau)
                          [[6, 1, -1]]


DISCUSSION :
    For G,H defined G(6) H(1) - G(1) H(6) is an eta-product and
    the identity is proved.

SEE ALSO :  

findtype1, findtype2,
findtype3, findtype4,
findtype5, findtype6,
findtype7, findtype8,
findtype9, findtype10