FUNCTION : findtype4 - find type 4 identities CALLING SEQUENCE : findtype4(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype4(T) cycles through symbolic expressions _GM(a)_HM(b) + c _GM(b)_HM(a) where 2 ≤ n ≤ T, ab=n, (a,b)=1, b < a, c in {-1,1}, and (*) GE(a) + HE(b) - (GE(b) + HE(a)) in Z and least one of a, b is even, using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. Condition (*) eliminates the case of fractional powers of q. The procedure also returns a list of [a,b,c] which give identities. NOTE: Output should be assigned myramtype4. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype4(6); "n=", 5 *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=128. To prove the identity we need to check up to O(q^(130)). To be on the safe side we check up to O(q^(368)). *** The identity below is PROVED! [6, 1, -1] _GM(6) _HM(1) - _GM(1) _HM(6) = 3 3 eta(24 tau) eta(6 tau) eta(4 tau) eta(tau) ---------------------------------------------- 3 3 eta(12 tau) eta(8 tau) eta(3 tau) eta(2 tau) [[6, 1, -1]] DISCUSSION : For G,H defined G*(6) H*(1) - G*(1) H*(6) is an eta-product and the identity is proved. SEE ALSO : findtype4, findtype2, findtype3, findtype4, findtype5, findtype6, findtype7, findtype8, findtype9, findtype40