FUNCTION : findtype3 - find type 3 identities CALLING SEQUENCE : findtype3(T) PARAMETERS : T - positive integer - GLOBAL VARIABLES : xprint,NEWJACID,RJID,SYMJID, TT1,TT2,PROVEDFL1,EBL SYNOPSIS : Before running the functions G,H,GM,HM,GE,HE must be defined. findtype3(T) cycles through symbolic expressions _G(a[1]) _G(b[1]) + c[1] _H(a[1]) _H(b[1]) ------------------------------------------ _G(a[2]) _H(b[2]) + c[2] _H(a[2]) _G(b[2]) where 2 ≤ n ≤ T, a_1b_1=a_2b_2=n, (a_1,b_1,c_1,d_1)=1, a_1 \le b_1, b_2 < a_2, c_1,c_2 in {-1,1}, and (*) GE(a[1]) + GE(b[1]) - (HE(a[2]) + HE(b[2])) in Z, GE(a[2]) + GE(b[2]) - (HE(a[2]) + GE(b[2])) in Z, and [a_2,b_2,c_2] is not an element for the list {myramtype1 (product earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product. If proveit is true then provemodfuncidBATCH (from theataids package) is used to prove it. The procedure also returns a list of [a_1,b_1,c_1,a_2,b_2,c_2] which give identities. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > xprint:=false: proveit:=true: > G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j): > GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j): > GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j): > findtype3(14); "n=", 10 *** There were NO errors. Each term was modular function on Gamma1(70). Also -mintotord=96. To prove the identity we need to check up to O(q^(98)). To be on the safe side we check up to O(q^(236)). *** The identity below is PROVED! [1, 14, 1, 7, 2, -1] 2 2 _G(1) _G(14) + _H(1) _H(14) eta(7 tau) eta(2 tau) --------------------------- = ----------------------- _G(7) _H(2) - _H(7) _G(2) 2 2 eta(14 tau) eta(tau) [[1, 14, 1, 7, 2, -1]] DISCUSSION : For G,H defined G(1) G(14) + H(1) H(14) ----------------------- G(7) H(2) - H(7) G(2) is an eta-product and the identity is proved. SEE ALSO : findtype1, findtype2, findtype3, findtype4, findtype5, findtype6, findtype7, findtype8, findtype9, findtype10