FUNCTION :  findtype10 - find type 10 identities
                

CALLING SEQUENCE :  findtype10(T)
                    

PARAMETERS :   T - positive integer  
                  -            

GLOBAL VARIABLES : 
        xprint,NEWJACID,RJID,SYMJID,
        TT1,TT2,PROVEDFL10,EBL

SYNOPSIS :   

        findtype10(T) cycles through symbolic expressions
        
                   _G(a[1]) _H(b[1]) + c[1] _H(a[1]) _G(b[1])
                   ---------------------------------------------
                   _G(a[2]) _HM(b[2]) + c[2] _H(a[2]) _GM(b[2])
        where  2 ≤ n ≤ T, a[1]b[1]=a[2]b[2]=n, (a[1],b[1],a[2],b[2])=1,  
        a[1] >  b[1], b[2] < a[2], c[1],c[2] in {-1,1},  and
        
        (*)
           GE(a[1]) + HE(b[1]) - (HE(a[1]) + GE(b[1])) in Z,
           GE(a[2]) + HE(b[2]) - (HE(a[2]) + GE(b[2])) in Z,
        
        and [a[1],b[1],c[1]] is not an element for the list {myramtype1
        (product earlier by findtype1), using CHECKRAMIDF
        to check whether the expression corresponds to a likely eta-product.
        If proveit is true then provemodfuncidBATCH (from theataids 
        package) uses provemodfuncidBATCH to prove it. 
        The procedure also returns a list of [a[1],b[1],c[1],a[2],b[2],c[2]]
        which give identities.

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  xprint:=false: proveit:=true:
>  G:=j->1/GetaL([1],5,j):H:=j->1/GetaL([2],5,j):
>  GM:=j->1/MGetaL([1],5,j): HM:=j->1/MGetaL([2],5,j):
>  GE:=j->-GetaLEXP([1],5,j):HE:=j->-GetaLEXP([2],5,j):
>  findtype10(12);
*** There were NO errors.  Each term was modular function on
    Gamma1(60). Also -mintotord=56. To prove the identity
    we need to  check up to O(q^(58)).
    To be on the safe side we check up to O(q^(176)).
*** The identity below is PROVED!
[6, 1, -1, 6, 1, 1]
                                         3                    2  
 _G(6) _H(1) - _H(6) _G(1)     eta(6 tau)  eta(4 tau) eta(tau)   
--------------------------- = -----------------------------------
_G(6) _HM(1) + _H(6) _GM(1)                         2           3
                              eta(12 tau) eta(3 tau)  eta(2 tau) 
"n=", 10
                     [[6, 1, -1, 6, 1, 1]]


DISCUSSION :
    For G,H defined 

     G(6) H(1) -  H(6) G(1)   
     -----------------------                               
     G(6) H*(1) + H(6) G*(1)              

    is an eta-product and the identity is proved.

SEE ALSO :  

findtype1, findtype2,
findtype3, findtype4,
findtype5, findtype6,
findtype7, findtype8,
findtype9, findtype10