FUNCTION :  printtype5 -  print a Type 5 identity
                

CALLING SEQUENCE :  printtype5(L, eqn, num)                   

PARAMETERS :  L - list [a,p,c1,N,B]
            num,eqn - positive integers

GLOBAL VARIABLES : _F

SYNOPSIS :   
   Prints  identity for
   G*(a) G*(p) + c1 H*(a) H*(p)
   with equation number (eqn.num).

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j):
>  GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j):
>  GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j):
>  proveit:=true: xprint:=false:
>  findtype5(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(48). Also -mintotord=24. To prove the identity
    we need to  check up to O(q^(26)).
    To be on the safe side we check up to O(q^(120)).
*** The identity below is PROVED!
[1, 2, -1]
                                        eta(16 tau) eta(6 tau) eta(tau)
       _GM(1) _GM(2) - _HM(1) _HM(2) = ----------------------------------
                                       eta(48 tau) eta(12 tau) eta(2 tau)

                                  [[1, 2, -1]]

>  L:=PROVEDFL5[1];
                            L := [1, 2, -1, 48, -24]

>  printtype5(L,3, 5);
                             eta(16 tau) eta(6 tau) eta(tau)
G*(1) G*(2) - H*(1) H*(2) = ----------------------------------, Gamma[1](48),
                            eta(48 tau) eta(12 tau) eta(2 tau)

    -B = 24,     (3.5)



DISCUSSION :

SEE ALSO :  

findtype1,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist/a>