FUNCTION : printtype5 - print a Type 5 identity CALLING SEQUENCE : printtype5(L, eqn, num) PARAMETERS : L - list [a,p,c1,N,B] num,eqn - positive integers GLOBAL VARIABLES : _F SYNOPSIS : Prints identity for G*(a) G*(p) + c1 H*(a) H*(p) with equation number (eqn.num). EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j): > GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j): > GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j): > proveit:=true: xprint:=false: > findtype5(6); *** There were NO errors. Each term was modular function on Gamma1(48). Also -mintotord=24. To prove the identity we need to check up to O(q^(26)). To be on the safe side we check up to O(q^(120)). *** The identity below is PROVED! [1, 2, -1] eta(16 tau) eta(6 tau) eta(tau) _GM(1) _GM(2) - _HM(1) _HM(2) = ---------------------------------- eta(48 tau) eta(12 tau) eta(2 tau) [[1, 2, -1]] > L:=PROVEDFL5[1]; L := [1, 2, -1, 48, -24] > printtype5(L,3, 5); eta(16 tau) eta(6 tau) eta(tau) G*(1) G*(2) - H*(1) H*(2) = ----------------------------------, Gamma[1](48), eta(48 tau) eta(12 tau) eta(2 tau) -B = 24, (3.5) DISCUSSION : SEE ALSO : findtype1, printtype1, printtype2, printtype3, printtype4, printtype5, printtype6, printtype7, printtype8, printtype9, printtype10, printtypelist/a>