FUNCTION : printtype3 - print a Type 3 identity CALLING SEQUENCE : printtype3(L, eqn, num) PARAMETERS : L - list [a1,p1,c2,a2,p2,c2,N,B] num,eqn - positive integers GLOBAL VARIABLES : _F SYNOPSIS : Prints identity for (G(a1)*G(p1) + c1 *H(a1)*H(p1)) /(G(a2)*H(p2)+c2*H(a2)*G(p2)): with equation number (eqn.num) EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j): > GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j): > GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j): > proveit:=true: xprint:=false: > findtype3(6); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=64. To prove the identity we need to check up to O(q^(66)). To be on the safe side we check up to O(q^(184)). *** The identity below is PROVED! [2, 3, -1, 6, 1, -1] 2 2 5 _G(2) _G(3) - _H(2) _H(3) eta(60 tau) eta(15 tau) eta(10 tau) eta(6 tau) ------------------------- = ------------------------------------------------- _G(6) _H(1) - _H(6) _G(1) 5 2 2 eta(30 tau) eta(20 tau) eta(5 tau) eta(2 tau) [[2, 3, -1, 6, 1, -1]] > L:=PROVEDFL3[1]; L := [2, 3, -1, 6, 1, -1, 60, -64] > printtype3(L,3, 2); 2 2 5 G(2) G(3) - H(2) H(3) eta(60 tau) eta(15 tau) eta(10 tau) eta(6 tau) --------------------- = -------------------------------------------------, G(6) H(1) - H(6) G(1) 5 2 2 eta(30 tau) eta(20 tau) eta(5 tau) eta(2 tau) Gamma[1](60), -B = 64, (3.2) DISCUSSION : SEE ALSO : findtype3, printtype1, printtype2, printtype3, printtype4, printtype5, printtype6, printtype7, printtype8, printtype9, printtype10, printtypelist