FUNCTION : printtype10 - print a Type 10 identity CALLING SEQUENCE : printtype10(L, eqn, num) PARAMETERS : L - list [a1,p1,c1,a2,p2,c2,N,B] num,eqn - positive integers GLOBAL VARIABLES : _F SYNOPSIS : Prints identity for (G(a1) H(p1)+c1 H(a1) G(p1))/(G(a2) H*(p2)+c2 H(a2) G*(p2)) with equation number (eqn.num) EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > GL:=[1,7]: HL:=[5,11]:M:=24: > G:=j->1/GetaL(GL,M,j): > H:=j->1/GetaL(HL,M,j): > GM:=j->1/MGetaL(GL,M,j): > HM:=j->1/MGetaL(HL,M,j): > GE:=j->-GetaLEXP(GL,M,j): > HE:=j->-GetaLEXP(HL,M,j): > proveit:=true: noprint:=true: xprint:=false: > myramtype1:=findtype1(12); myramtype1 := [[2, 1, -1], [2, 1, 1], [3, 1, -1]] > findtype10(6); [[3, 2, 1, 6, 1, -1]] > L:=PROVEDFL10[1]; L := [3, 2, 1, 6, 1, -1, 144, -360] > printtype10(L,3, 10); G(3) H(2) + H(3) G(2) ----------------------- = G(6) H*(1) - H(6) G*(1) 2 2 3 eta(144 tau) eta(36 tau) eta(24 tau) eta(9 tau) eta(6 tau) eta(4 tau) -------------------------------------------------------------------------, 2 2 2 2 eta(72 tau) eta(48 tau) eta(18 tau) eta(12 tau) eta(3 tau) eta(2 tau) Gamma[1](144), -B = 360, (3.10) DISCUSSION : SEE ALSO : findtype10, printtype1, printtype2, printtype3, printtype4, printtype5, printtype6, printtype7, printtype8, printtype9, printtype10, printtypelist