FUNCTION :  printtype10 -  print a Type 10 identity
                

CALLING SEQUENCE :  printtype10(L, eqn, num)                  

PARAMETERS :  L - list [a1,p1,c1,a2,p2,c2,N,B]
            num,eqn - positive integers

GLOBAL VARIABLES : _F

SYNOPSIS :   
   Prints  identity for
(G(a1) H(p1)+c1 H(a1) G(p1))/(G(a2) H*(p2)+c2 H(a2) G*(p2))
  with equation number (eqn.num)

EXAMPLES :   

> with(qseries):
> with(thetaids):
> with(ramarobinsids):
> GL:=[1,7]: HL:=[5,11]:M:=24:
> G:=j->1/GetaL(GL,M,j):
> H:=j->1/GetaL(HL,M,j):
> GM:=j->1/MGetaL(GL,M,j):
> HM:=j->1/MGetaL(HL,M,j):
> GE:=j->-GetaLEXP(GL,M,j):
> HE:=j->-GetaLEXP(HL,M,j):
> proveit:=true: noprint:=true: xprint:=false:
> myramtype1:=findtype1(12);
               myramtype1 := [[2, 1, -1], [2, 1, 1], [3, 1, -1]]

> findtype10(6);
                             [[3, 2, 1, 6, 1, -1]]

> L:=PROVEDFL10[1];
                      L := [3, 2, 1, 6, 1, -1, 144, -360]

> printtype10(L,3, 10);
 G(3) H(2) + H(3) G(2)
----------------------- =
G(6) H*(1) - H(6) G*(1)

                2                        2                      3
    eta(144 tau)  eta(36 tau) eta(24 tau)  eta(9 tau) eta(6 tau)  eta(4 tau)
    -------------------------------------------------------------------------,
               2            2            2            2
    eta(72 tau)  eta(48 tau)  eta(18 tau)  eta(12 tau)  eta(3 tau) eta(2 tau)

    Gamma[1](144), -B = 360,     (3.10)

DISCUSSION :

SEE ALSO :  

findtype10,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist