FUNCTION :  printtype2 -  print a Type 2 identity
                

CALLING SEQUENCE :  printtype2(L, eqn, num)                

PARAMETERS :  L - list [p,a,c1,N,B]
              eqn, num - positive integers
GLOBAL VARIABLES : _F

SYNOPSIS :   
   Prints  identity for
   G(a)*G(p) + c1*H(a)*H(p)
   with equation number (eqn.num)
   

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j):
>  GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j):
>  GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j):
>  proveit:=true: xprint:=false:
>  findtype2(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(60). Also -mintotord=40. To prove the identity
    we need to  check up to O(q^(42)).
    To be on the safe side we check up to O(q^(160)).
*** The identity below is PROVED!
[2, 3, -1]
                                                                 3
                              eta(15 tau) eta(12 tau) eta(10 tau)  eta(4 tau)
  _G(2) _G(3) - _H(2) _H(3) = -----------------------------------------------
                                         2            2
                              eta(30 tau)  eta(20 tau)  eta(5 tau) eta(2 tau)

                                  [[2, 3, -1]]

>  L:=PROVEDFL2[1];
                            L := [2, 3, -1, 60, -40]

>  printtype2(L,3, 2);
                                                           3
                        eta(15 tau) eta(12 tau) eta(10 tau)  eta(4 tau)
G(2) G(3) - H(2) H(3) = -----------------------------------------------,
                                   2            2
                        eta(30 tau)  eta(20 tau)  eta(5 tau) eta(2 tau)

    Gamma[1](60), -B = 40,     (3.2)



DISCUSSION :

SEE ALSO :  

findtype2,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist