FUNCTION :  printtype7 -  print a Type 7 identity
                

CALLING SEQUENCE :  printtype7(L, EQNNAME, num, nL)

PARAMETERS :  L - list [a,p,c1,N,B]
            num - positive integer (no. of identity found by findtype7)
             nL - number of identities

GLOBAL VARIABLES : _F

SYNOPSIS :   
   Prints  identity for
   G*(a) G(p) + c1 H*(a) H(p)
  with equation number (eqn.num)

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j):
>  GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j):
>  GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j):
>  proveit:=true: xprint:=false:
>  findtype7(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(24). Also -mintotord=4. To prove the identity
    we need to  check up to O(q^(6)).
    To be on the safe side we check up to O(q^(52)).
*** The identity below is PROVED!
[1, 1, -1]
                                                      4
                                           eta(12 tau)  eta(8 tau)
        _GM(1) _G(1) - _HM(1) _H(1) = ----------------------------------
                                                 3
                                      eta(24 tau)  eta(6 tau) eta(4 tau)

*** There were NO errors.  Each term was modular function on
    Gamma1(24). Also -mintotord=4. To prove the identity
    we need to  check up to O(q^(6)).
    To be on the safe side we check up to O(q^(52)).
*** The identity below is PROVED!
[1, 1, 1]
                                                                 4
                                            eta(6 tau) eta(4 tau)
  _GM(1) _G(1) + _HM(1) _H(1) = ----------------------------------------------
                                                                             2
                                eta(24 tau) eta(12 tau) eta(8 tau) eta(2 tau)

                            [[1, 1, -1], [1, 1, 1]]

>  L:=PROVEDFL7[1];
                            L := [1, 1, -1, 24, -4]

>  printtype7(L,3, 5);
                                          4
                               eta(12 tau)  eta(8 tau)
G*(1) G(1) - H*(1) H(1) = ----------------------------------, Gamma[1](24),
                                     3
                          eta(24 tau)  eta(6 tau) eta(4 tau)

    -B = 4,     (3.5)





DISCUSSION :

SEE ALSO :  

findtype7,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist