FUNCTION :  printtype6 -  print of Type 6 identity
                

CALLING SEQUENCE :  printtype6(L, EQNNAME, num, nL)

PARAMETERS :  L - list [a,p,c1,N,B]
            num - positive integer (no. of identity found by findtype6)
             nL - number of identities

GLOBAL VARIABLES : _F

SYNOPSIS :   
   Prints  identity for
  G(a) H*(p) + c1 G*(a) H(p)
  with equation number (eqn.num)

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j):
>  GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j):
>  GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j):
>  proveit:=true: xprint:=false:
>  findtype6(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(24). Also -mintotord=4. To prove the identity
    we need to  check up to O(q^(6)).
    To be on the safe side we check up to O(q^(52)).
*** The identity below is PROVED!
[1, 1, -1]
                                                 3           2           2
                                    2 eta(24 tau)  eta(6 tau)  eta(4 tau)
      _G(1) _HM(1) - _GM(1) _H(1) = --------------------------------------
                                                 5
                                      eta(12 tau)  eta(8 tau) eta(2 tau)

*** There were NO errors.  Each term was modular function on
    Gamma1(24). Also -mintotord=4. To prove the identity
    we need to  check up to O(q^(6)).
    To be on the safe side we check up to O(q^(52)).
*** The identity below is PROVED!
[1, 1, 1]
                                                                  2
                               2 eta(24 tau) eta(8 tau) eta(6 tau)  eta(4 tau)
 _G(1) _HM(1) + _GM(1) _H(1) = -----------------------------------------------
                                                      4
                                           eta(12 tau)  eta(2 tau)

WARNING: There were 8 ebasethreshold problems.
         See the global array EBL.
                            [[1, 1, -1], [1, 1, 1]]

>  L:=PROVEDFL6[1];
                            L := [1, 1, -1, 24, -4]

>  printtype6(L,3, 5);
                                       3           2           2
                          2 eta(24 tau)  eta(6 tau)  eta(4 tau)
G(1) H*(1) - G*(1) H(1) = --------------------------------------, Gamma[1](24),
                                       5
                            eta(12 tau)  eta(8 tau) eta(2 tau)

    -B = 4,     (3.5)






DISCUSSION :

SEE ALSO :  

findtype6,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist