FUNCTION : printtype1 - print a Type 1 identity CALLING SEQUENCE : latexprinttype1(L, eqn, num) PARAMETERS : L - list [p,a,c1,N,B] eqn,num - positive integers GLOBAL VARIABLES : _F SYNOPSIS : Print type 1 identity with equation number (eqn.num). EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j): > GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j): > GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j): > proveit:=true: xprint:=false: > ramtype1:=findtype1(6); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to O(q^(42)). To be on the safe side we check up to O(q^(160)). *** The identity below is PROVED! [6, 1, -1] 3 eta(30 tau) eta(12 tau) eta(5 tau) eta(4 tau) _G(6) _H(1) - _G(1) _H(6) = ------------------------------------------------ 2 2 eta(60 tau) eta(15 tau) eta(10 tau) eta(6 tau) ramtype1 := [[6, 1, -1]] > L:=PROVEDFL1[1]; L := [6, 1, -1, 60, -40] > printtype1(L,3, 1); 3 eta(30 tau) eta(12 tau) eta(5 tau) eta(4 tau) G(6) H(1) - G(1) H(6) = ------------------------------------------------, 2 2 eta(60 tau) eta(15 tau) eta(10 tau) eta(6 tau) Gamma[1](60), -B = 40, (3.1) DISCUSSION : SEE ALSO : findtype1, printtype1, printtype2, printtype3, printtype4, printtype5, printtype6, printtype7, printtype8, printtype9, printtype10, printtypelist