FUNCTION :  printtype1 - print a Type 1 identity
                

CALLING SEQUENCE :  latexprinttype1(L, eqn, num)                    

PARAMETERS :  L - list [p,a,c1,N,B]
            eqn,num - positive integers

GLOBAL VARIABLES : _F

SYNOPSIS :   
  Print type 1 identity with equation number (eqn.num).
   

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  with(ramarobinsids):
>  G:=j->1/GetaL([1],10,j):H:=j->1/GetaL([3],10,j):
>  GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j):
>  GE:=j->-GetaLEXP([1],10,j):HE:=j->-GetaLEXP([3],10,j):
>  proveit:=true: xprint:=false:
>  ramtype1:=findtype1(6);
*** There were NO errors.  Each term was modular function on
    Gamma1(60). Also -mintotord=40. To prove the identity
    we need to  check up to O(q^(42)).
    To be on the safe side we check up to O(q^(160)).
*** The identity below is PROVED!
[6, 1, -1]
                                          3
                               eta(30 tau)  eta(12 tau) eta(5 tau) eta(4 tau)
  _G(6) _H(1) - _G(1) _H(6) = ------------------------------------------------
                                         2                        2
                              eta(60 tau)  eta(15 tau) eta(10 tau)  eta(6 tau)

                            ramtype1 := [[6, 1, -1]]

>  L:=PROVEDFL1[1];
                            L := [6, 1, -1, 60, -40]

>  printtype1(L,3, 1);
                                    3
                         eta(30 tau)  eta(12 tau) eta(5 tau) eta(4 tau)
G(6) H(1) - G(1) H(6) = ------------------------------------------------,
                                   2                        2
                        eta(60 tau)  eta(15 tau) eta(10 tau)  eta(6 tau)

    Gamma[1](60), -B = 40,     (3.1)


DISCUSSION :

SEE ALSO :  

findtype1,
printtype1, printtype2, printtype3, printtype4,
printtype5, printtype6, printtype7, printtype8,
printtype9, printtype10, printtypelist