FUNCTION : printtype4 - print a Type 4 identity CALLING SEQUENCE : printtype4(L, eqn, num) PARAMETERS : L - list [p,a,c1,N,B] eqn,num - positive integers GLOBAL VARIABLES : _F SYNOPSIS : Prints identity for G*(p) H*(a) + c1 G*(a) H*(p) with equation number (eqn.num) EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j): > GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j): > GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j): > proveit:=true: xprint:=false: > findtype4(6); *** There were NO errors. Each term was modular function on Gamma1(48). Also -mintotord=24. To prove the identity we need to check up to O(q^(26)). To be on the safe side we check up to O(q^(120)). *** The identity below is PROVED! [2, 1, -1] 3 eta(48 tau) eta(8 tau) eta(6 tau) eta(tau) _GM(2) _HM(1) - _GM(1) _HM(2) = ---------------------------------------------- 3 eta(24 tau) eta(16 tau) eta(4 tau) eta(2 tau) "n=", 5 [[2, 1, -1]] > L:=PROVEDFL4[1]; L := [2, 1, -1, 48, -24] > printtype4(L,3, 4); 3 eta(48 tau) eta(8 tau) eta(6 tau) eta(tau) G*(2) H*(1) - G*(1) H*(2) = ----------------------------------------------, 3 eta(24 tau) eta(16 tau) eta(4 tau) eta(2 tau) Gamma[1](48), -B = 24, (3.4) DISCUSSION : SEE ALSO : findtype1, printtype1, printtype2, printtype3, printtype4, printtype5, printtype6, printtype7, printtype8, printtype9, printtype10, printtypeL1